【題目】已知圓軸相切于點(diǎn)(0,3),圓心在經(jīng)過點(diǎn)(2,1)與點(diǎn)(﹣2,﹣3)的直線上.

(1)求圓的方程;

(2)圓與圓相交于M、N兩點(diǎn),求兩圓的公共弦MN的長.

【答案】(1);(2).

【解析】

(1)求出過點(diǎn)(2,1)與點(diǎn)(﹣2,﹣3)的直線的方程,又由條件得到圓心在直線y=3上,解方程組可得圓心的坐標(biāo),進(jìn)而得到圓的半徑,于是可得圓的方程;(2)將圓的方程化為一般式,與圓的方程作差后可得兩圓公共弦所在直線的方程,然后求出圓心到公共弦的距離,進(jìn)而可得公共弦的長.

(1)經(jīng)過點(diǎn)(2,1)與點(diǎn)(﹣2,﹣3)的直線方程為,

即y=x﹣1.

由題意可得,圓心在直線y=3上,

,解得圓心坐標(biāo)為(4,3),

故圓C1的半徑為4.

則圓C1的方程為(x﹣4)2+(y﹣3)2=16;

(2)∵圓C1的方程為(x﹣4)2+(y﹣3)2=16,

即x2+y2﹣8x﹣6y+9=0,

圓C2:x2+y2﹣2x+2y﹣9=0,

兩式作差可得兩圓公共弦所在直線方程為3x+4y﹣9=0.

圓C1的圓心到直線3x+4y﹣9=0的距離d=

∴兩圓的公共弦MN的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一個(gè)正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實(shí)心裝飾塊,容器內(nèi)盛有升水時(shí),水面恰好經(jīng)過正四棱錐的頂點(diǎn)P.如果將容器倒置,水面也恰好過點(diǎn)(圖2).有下列四個(gè)命題:

A.正四棱錐的高等于正四棱柱高的一半

B.將容器側(cè)面水平放置時(shí),水面也恰好過點(diǎn)

C.任意擺放該容器,當(dāng)水面靜止時(shí),水面都恰好經(jīng)過點(diǎn)

D.若往容器內(nèi)再注入升水,則容器恰好能裝滿

其中真命題的代號(hào)是: (寫出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;

(Ⅱ)證明:當(dāng)時(shí),關(guān)于的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級(jí)學(xué)生會(huì)有理科生4名,其中3名男同學(xué);文科生3名,其中有1名男同學(xué).從這7名成員中隨機(jī)抽4人參加高中示范校驗(yàn)收活動(dòng)問卷調(diào)查.

(Ⅰ)設(shè)為事件“選出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)設(shè)為選出的4人中男生人數(shù)與女生人數(shù)差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來越受到社會(huì)的關(guān)注.一些高中已經(jīng)開始嘗試開設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.下表為某高中為了調(diào)查學(xué)生成績與選修生涯規(guī)劃課程的關(guān)系,隨機(jī)抽取50名學(xué)生的統(tǒng)計(jì)數(shù)據(jù).

成績優(yōu)秀

成績不夠優(yōu)秀

總計(jì)

選修生涯規(guī)劃課

15

10

25

不選修生涯規(guī)劃課

6

19

25

總計(jì)

21

29

50

(Ⅰ)根據(jù)列聯(lián)表運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有的把握認(rèn)為“學(xué)生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說明理由;

(Ⅱ)如果從全校選修生涯規(guī)劃課的學(xué)生中隨機(jī)地抽取3名學(xué)生,求抽到成績不夠優(yōu)秀的學(xué)生人數(shù)的分布列和數(shù)學(xué)期望(將頻率當(dāng)作概率計(jì)算).

參考附表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各圖中,AB為正方體的兩個(gè)頂點(diǎn),M、N、P分別為其所在棱的中點(diǎn),能得出AB//平面MNP的圖形的序號(hào)是( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過定點(diǎn).

1)若與圓相切,求的方程;

2)若與圓相交于,兩點(diǎn),線段的中點(diǎn)為,又的交點(diǎn)為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)銷某商品,顧客可采用一次性付款或分期付款購買.根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是經(jīng)銷一件該商品,若顧客采用一次性付款,商場獲得利潤200若顧客采用分期付款,商場獲得利潤250元.

1)求3位購買該商品的顧客中至少有1位采用一次性付款的概率

2)求3位顧客每人購買1件該商品,商場獲得利潤不超過650元的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體ABCD中,異面直線ABCD所成的角為_______,直線AB與底面BCD所成角的余弦值為_______

查看答案和解析>>

同步練習(xí)冊答案