已知sinα和cosα是方程4x2+2
6
x+m=0
的兩實(shí)根
(1)求m的值;
(2)求
sinα
1-cotα
+
cosα
1-tanα
的值.
分析:(1)由已知中sinθ、cosθ是關(guān)于x的方程4x2+2
6
x+m=0
的兩個(gè)實(shí)根,我們根據(jù)方程存在實(shí)根的條件,我們可以求出滿足條件的m的值,然后根據(jù)韋達(dá)定理結(jié)合同角三角函數(shù)關(guān)系,我們易求出滿足條件的m的值.
(2)
sinα
1-cotα
+
cosα
1-tanα
=
sinα
1-
cosα
sinα
+
cosα
1-
sinα
cosα
=
sin2α-cos 2α
sinα-cosα
=sinα+cosα,由此能求出其結(jié)果.
解答:解:(1)sina+cosa=-
6
2
,
sina•cosa=
m
4

由sin2a+cos2a=1=(sina+cosa)2-2sinacosa=
6
4
-
2m
4
=1
∴m=1.
(2)
sinα
1-cotα
+
cosα
1-tanα

=
sinα
1-
cosα
sinα
+
cosα
1-
sinα
cosα

=
sin2α-cos 2α
sinα-cosα

=sinα+cosα
=-
6
2
點(diǎn)評(píng):本題考查二次函數(shù)的性質(zhì)和弦切互化,解題時(shí)要認(rèn)真審題,注意韋達(dá)定理的合理運(yùn)用和三角函數(shù)的相互轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα和cosα是方程8x2+6mx+2m+1=0的兩個(gè)實(shí)根,則m的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知sinα和cosα是方程數(shù)學(xué)公式的兩實(shí)根
(1)求m的值;
(2)求數(shù)學(xué)公式的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知sinα和cosα是方程4x2+2
6
x+m=0
的兩實(shí)根
(1)求m的值;
(2)求
sinα
1-cotα
+
cosα
1-tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年浙江省杭州高級(jí)中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知sinα和cosα是方程8x2+6mx+2m+1=0的兩個(gè)實(shí)根,則m的值等于   

查看答案和解析>>

同步練習(xí)冊(cè)答案