解方程sin3x-sinx+cos2x=0.
sin3x-sinx+cos2x=0,
2cos2x•sinx+cos2x=0,
cos2x(2sinx+1)=0,
由cos2x=0,2x=2kπ+
π
2

x=kπ±
π
4
.(k為整數(shù))
由2sinx+1=0,sinx=-
1
2
,
x=kπ+(-1)k(-
π
6
)=kπ+(-1)k+1
π
6
.(k為整數(shù))
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列4個(gè)命題:
①保持函數(shù)y=sin(2x+
π
3
)
圖象的縱坐標(biāo)不變,將橫坐標(biāo)擴(kuò)大為原來(lái)的2倍,得到的圖象的解析式為y=sin(x+
π
6
)

②在區(qū)間[0,
π
2
)
上,x0是y=tanx的圖象與y=cosx的圖象的交點(diǎn)的橫坐標(biāo),則
π
6
x0
π
4

③在平面直角坐標(biāo)系中,取與x軸、y軸正方向相同的兩個(gè)單位向量
i
,
j
作為基底,則四個(gè)向量
i
+2
j
2
i
+
3
j
,
3
i
-
2
j
,2
i
-
j
的坐標(biāo)表示的點(diǎn)共圓.
④方程cos3x-sin3x=1的解集為{x|x=2kπ-
π
2
,k∈Z}

其中正確的命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列4個(gè)命題:
①保持函數(shù)y=sin(2x+
π
3
)
圖象的縱坐標(biāo)不變,將橫坐標(biāo)擴(kuò)大為原來(lái)的2倍,得到的圖象的解析式為y=sin(x+
π
6
)

②在區(qū)間[0,
π
2
)
上,x0是y=tanx的圖象與y=cosx的圖象的交點(diǎn)的橫坐標(biāo),則
π
6
x0
π
4

③在平面直角坐標(biāo)系中,取與x軸、y軸正方向相同的兩個(gè)單位向量
i
,
j
作為基底,則四個(gè)向量
i
+2
j
,
2
i
+
3
j
,
3
i
-
2
j
,2
i
-
j
的坐標(biāo)表示的點(diǎn)共圓.
④方程cos3x-sin3x=1的解集為{x|x=2kπ-
π
2
,k∈Z}

其中正確的命題的序號(hào)為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案