函數(shù)f(x)=
x2+2x+3,x≤0
-2+lnx,x>0
的零點個數(shù)為
 
考點:函數(shù)的零點
專題:計算題,函數(shù)的性質及應用
分析:求出對應方程的根,即可得出函數(shù)f(x)=
x2+2x+3,x≤0
-2+lnx,x>0
的零點.
解答: 解:x≤0時,由x2+2x+3=0可得方程無解;
x>0時,由-2+lnx=0,可得x=e2,
∴函數(shù)f(x)=
x2+2x+3,x≤0
-2+lnx,x>0
的零點個數(shù)為1,
故答案為:1.
點評:本題考查的知識點是函數(shù)零點,熟練掌握函數(shù)零點與對應方程根之間的關系是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)、g(x)都是定義域為R的連續(xù)函數(shù).已知:g(x)滿足:①當x>O時,g′(x)>0 恒成立;②?x∈R都有g(x)=g(-x).f(x)滿足:①?x∈R都有f(x+
3
)=f(x-
3
);②當x∈[-
3
2
3
2
]時,f(x)=x3-3x.若關于;C的不等式g[f(x)]≤g(a2-a+2)對x∈[-
3
2
-2
3
,
3
2
-2
3
]恒成立,則a的取值范圍是( 。
A、(-∞,0]∪[1,+∞)
B、[0,1]
C、[
1
2
-
3
3
4
,-
1
2
+
3
3
4
]
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈(5,9),y∈(7,10),則x-y∈
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin2x-
3
cos2x+n-1(n∈N*).
(1)在銳角△ABC中,a,b,c分別是角A,B,C的對邊,當n=1時,f(A)=
3
,且c=3,△ABC的面積為3
3
,求b的值.
(2)若f(x)的最大值為an(an為數(shù)列{an}的通項公式),又數(shù)列{bn}滿足bn=
1
anan+1
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在滿足x2+y2≤25的實數(shù)對(x,y)中,任取一組(x,y),恰使|x|+|y|≤5成立的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x的焦點為F2,點F1與F2關于坐標原點對稱,以F1,F(xiàn)2為焦點的橢圓C,過點(1,
2
2
),
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設T(2,0),過點F2作直線l與橢圓C交于A,B兩點,且
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P:
x2
1-2m
+
y2
m+2
=1表示雙曲線,q:函數(shù)g(x)=3x2+2mx+m+
4
3
有兩個不同的零點.
(1)若p為假命題,求實數(shù)m的取值范圍,
(2)若p∧q,為假命題,pⅤq為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a3=-6,S5=S6
(1)求{an}的通項公式;
(2)若數(shù)列{2n-1•an}的前n項和為Tn,求不等式Tn-n•2n+1+100>0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足an+2Sn•Sn-1=0(n≥2,且n∈N),a1=
1
2

(1)求證:{
1
Sn
}是等差數(shù)列;
(2)若bn=Sn•Sn+1,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

同步練習冊答案