如圖所示,四面體ABCD被一平面所截,截面與四條棱AB、AC、CD、BD分別相交于E、F、G、H四點,且截面EFGH是一個平行四邊形.

求證:棱BC∥平面EFGH,AD∥平面EFGH.

答案:
解析:

  證明:∵截面EFGH是平行四邊形,

  ∴EF∥HG,EH∥FG.

  ∴EF∥平面DBC.

  又∵平面ABC∩平面DBC=BC,EF平面ABC,

  ∴EF∥BC.

  ∴棱BC∥平面EFGH.

  同理,∵EH∥FG,∴EH∥平面ACD.

  又∵平面ABD∩平面ACD=AD,EH平面ABD,

  ∴EH∥AD.

  ∴棱AD∥平面EFGH.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的四面體ABCD中,AB、BC、CD兩兩互相垂直,且BC=CD=1.
(Ⅰ)求證:平面ACD⊥平面ABC;
(Ⅱ)求二面角C-AB-D的大。
(Ⅲ)若直線BD與平面ACD所成的角為30°,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•襄陽模擬)在如圖所示的四面體ABCD中,AB、BC、CD兩兩互相垂直,且BC=CD=1.
(1)求證:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大;
(3)若直線BD與平面ACD所成的角為θ,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•河?xùn)|區(qū)二模)如圖所示,四面體ABCD中,O、E分別是BD和BC的中點,且AB=AD=
2
,AC=BC=CD=BD=2
(1)求證:AO⊥平面BCD;
(2)求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四面體ABCD被一平面所截,截面與四條棱AB、ACCD、BD相交于E、FG、H四點,且截面EFGH是一個平行四邊形.

求證:棱BC∥平面EFGHAD∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省原名校高三下學(xué)期第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,四面體ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.

(1)求證:AD⊥BC;

(2)求二面角B—AC—D的余弦值.

 

查看答案和解析>>

同步練習(xí)冊答案