精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=(x2+bx+c)e2,其中b,c∈R為常數.
(I)若b2>4c-1,討論函數f(x)的單調性;
(II)若b2≤4(c-1),且,試證:-6≤b≤2.
【答案】分析:(1)可用導數的知識求其單調性,注意到對題目中條件b2>4c-1的運用,即保證導函數有兩個零點,再進行計算.
(2)注意到f′(0)=c,則上述極限式變形為=f′(0),再結合不等式求解.
解答:解:(I)求導得f′(x)=[x2+(b+2)x+b+c]e2
因b2>4(c-1).故方程f′(x)=0即x2+(b+2)x+b+c=0有兩根.

令f′(x)>0.解得x<x1或x>x2
又令f′(x)<0.解得x1<x<x2
故當x∈(-∞,x1)時,f(x)是增函數;當x∈(x2,+∞)時,f(x)也是增函數;
但當x∈(x1,x2)時,f(x)是減函數
(II)易知f(0)=c,f'(0)=b+c,因此
所以,由已知條件得,因此b2+4b-12≤0
解得-6≤b≤2.
點評:本題中給定了不等式關系,減小了題目的難度,避免了對導函數是否有零點和有幾個零點的討論,此外,對于導數定義的考查也在本題中體現出來.注意到其中代換的技巧c=f′(0).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區(qū)間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案