在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 (α為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
(1)點(diǎn)P在直線 l上.(2)最小值為.
解析試題分析:(1)把極坐標(biāo)系的點(diǎn)P(4,)化為直角坐標(biāo),得P(0,4),
因?yàn)辄c(diǎn)P的直角坐標(biāo)(0,4)滿足直線l的方程x-y+4=0,所以點(diǎn)P在直線 l上.
(2)因?yàn)辄c(diǎn)Q在曲線C上,故可設(shè)點(diǎn)Q的坐標(biāo)為(cosα,sinα),
從而點(diǎn)Q到直線l的距離
=cos(α+)+2,
由此得,當(dāng)cos(α+)=-1時(shí),d取得最小值,且最小值為.
考點(diǎn):本題主要考查極坐標(biāo)與直角坐標(biāo)方程的互化,點(diǎn)到直線的距離公式,三角函數(shù)輔助角公式,三角函數(shù)的性質(zhì)。
點(diǎn)評:中檔題,(1)利用數(shù)形結(jié)合法,極值于直角三角形邊角關(guān)系,確定得到極坐標(biāo)方程。(2)的解答,很好體現(xiàn)了參數(shù)方程的應(yīng)用,將問題轉(zhuǎn)化成三角函數(shù)最值的研究。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的離心率為,右準(zhǔn)線方程為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓上,求實(shí)數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,
軸被拋物線截得的線段長等于的長半軸長.
(1)求的方程;
(2)設(shè)與軸的交點(diǎn)為,過坐標(biāo)原點(diǎn)的直線
與相交于兩點(diǎn),直線分別與相交于.
①證明:為定值;
②記的面積為,試把表示成的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)是橢圓的右焦點(diǎn),點(diǎn)、分別是軸、
軸上的動(dòng)點(diǎn),且滿足.若點(diǎn)滿足.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)過點(diǎn)任作一直線與點(diǎn)的軌跡交于、兩點(diǎn),直線、與直線分別交
于點(diǎn)、(為坐標(biāo)原點(diǎn)),試判斷是否為定值?若是,求出這個(gè)定值;若不是,
請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且與交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)雙曲線的頂點(diǎn)為,該雙曲線又與直線交于兩點(diǎn),且(為坐標(biāo)原點(diǎn))。
(1)求此雙曲線的方程;
(2)求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)是F拋物線與橢圓的公共焦點(diǎn),且橢圓的離心率為
(1)求橢圓的方程;
(2)過拋物線上一點(diǎn)P,作拋物線的切線,切點(diǎn)P在第一象限,如圖,設(shè)切線與橢圓相交于不同的兩點(diǎn)A、B,記直線OP,F(xiàn)A,FB的斜率分別為(其中為坐標(biāo)原點(diǎn)),若,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)M是圓C:上的一點(diǎn),且軸,為垂足,點(diǎn)滿足,記動(dòng)點(diǎn)的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若AB是曲線E的長為2的動(dòng)弦,O為坐標(biāo)原點(diǎn),求面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com