已知函數(shù)f(x)=x2-2lnx
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:f(x)≥lnx-x+2.
解:(Ⅰ)由題意知x>0,f′(x)=2x-
=
,令f′(x)=0,得x=-1(舍)或x=1,
當(dāng)0<x<1時(shí),f′(x)<0,當(dāng)x>1時(shí),f′(x)>0,
所以f(x)的增區(qū)間為(1,+∞),減區(qū)間為(0,1).
(Ⅱ)令g(x)=f(x)-(lnx-x+2)=x
2-3lnx+x-2,
g′(x)=2x-
+1=
=
,
令g′(x)>0,得x>1,令g′(x)<0,得0<x<1,
所以g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
所以g(x)
min=g(1)=0,
所以g(x)≥0,即f(x)≥lnx-x+2.
分析:(Ⅰ)求出f′(x),在定義域內(nèi)解不等式f′(x)>0,f′(x)<0,即得f(x)的單調(diào)區(qū)間;
(Ⅱ)構(gòu)造函數(shù)g(x)=f(x)-(lnx-x+2)=x
2-3lnx+x-2,問題轉(zhuǎn)化為g(x)
min≥0,從而轉(zhuǎn)化為函數(shù)最值問題求解.
點(diǎn)評(píng):本題考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值問題,考查分析問題解決問題的能力,考查轉(zhuǎn)化思想.