精英家教網 > 高中數學 > 題目詳情

已知數列{an}滿足數學公式,且對任意的正整數m,n,都有am+n=am+an,則數學公式等于


  1. A.
    數學公式
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    2
B
分析:由數列{an}滿足,且對任意的正整數m,n,都有am+n=am+an,知an=an-1+a1=,所以數列{an}是首項為,公差d=的等差數列,由此能求出
解答:∵數列{an}滿足,且對任意的正整數m,n,都有am+n=am+an,
∴an=an-1+a1=,
∴數列{an}是首項為,公差d=的等差數列,
=,
=
故選B.
點評:本題考查數列的綜合運用,解題時要認真審題,仔細解答,注意遞推公式的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數列bn-1是等比數列;
(2)求數列{anbn}的前n項和Sn;
(3)數列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數列{an}的通項公式;
(2)證明:對于一切正整數n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京模擬)已知數列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案