【題目】在平面直角坐標(biāo)系中,記拋物線y=x﹣x2與x軸所圍成的平面區(qū)域?yàn)镸,該拋物線與直線y=kx(k>0)所圍成的平面區(qū)域?yàn)镹,向區(qū)域M內(nèi)隨機(jī)拋擲一點(diǎn)P,若點(diǎn)P落在區(qū)域N內(nèi)的概率為 ,則k的值為( )
A.
B.
C.
D.

【答案】A
【解析】解:∵拋物線y=x﹣x2與x軸交于點(diǎn)(0,0)與(1,0),

∴根據(jù)定積分的幾何意義,可得拋物線與x軸所圍成的平面區(qū)域M的面積為

S=(x﹣x2)dx=( )| =

設(shè)拋物線與直線y=kx(k>0)所圍成的平面區(qū)域A的面積為S',

∵向區(qū)域M內(nèi)隨機(jī)拋擲一點(diǎn)P,點(diǎn)P落在區(qū)域A內(nèi)的概率為 ,

= ,可得S'= S= ,

求出y=x﹣x2與y=kx的交點(diǎn)中,除原點(diǎn)外的點(diǎn)B坐標(biāo)為(1﹣k,k﹣k2),

可得S'=[(x﹣x2)﹣kx]dx=[ (1﹣k)x2 ]| = (1﹣k)3

因此可得 (1﹣k)3= ,

解得k=

故選:A

【考點(diǎn)精析】認(rèn)真審題,首先需要了解幾何概型(幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)
(1)若f(x)是奇函數(shù),求m的值;
(2)當(dāng)m=1時(shí),求函數(shù)f(x)在(﹣∞,0)上的值域,并判斷函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù),請說明理由;
(3)若函數(shù)f(x)在[0,1]上是以3為上界的函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100


(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率. 附:K2=

P(K2>k0

0.10

0.05


0.01

0.005

k0

2.706

3.841


6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2(a﹣2)x﹣b2+13.
(1)先后兩次拋擲一枚質(zhì)地均勻的骰子(骰子六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6),骰子向上的數(shù)字一次記為a,b,求方程f(x)=0有兩個(gè)不等正根的概率;
(2)如果a∈[2,6],求函數(shù)f(x)在區(qū)間[2,3]上是單調(diào)函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F(xiàn),E1分別是棱AA1 , BB1 , A1B1的中點(diǎn).
(1)求證:CE∥平面C1E1F;
(2)求證:平面C1E1F⊥平面CEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,直l線l的參數(shù)方程為 (t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=10cosθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(2,6),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(2x﹣m)的定義域?yàn)榧螦,函數(shù)g(x)= 的定義域?yàn)榧螧.
(Ⅰ)若BA,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若A∩B=,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,霧霾日趨嚴(yán)重,我們的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題.某空氣凈化器制造廠,決定投入生產(chǎn)某型號的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)該型號空氣凈化器x(百臺(tái)),其總成本為P(x)(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本).銷售收入Q(x)(萬元)滿足Q(x)= ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)以述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)求利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)工廠生產(chǎn)多少百臺(tái)產(chǎn)品時(shí),可使利潤最多?

查看答案和解析>>

同步練習(xí)冊答案