在△ABC中,已知acosA+bcosB=ccosC,a=2bcosC,試判斷△ABC的形狀.
考點:余弦定理,正弦定理
專題:計算題,解三角形
分析:由a=2bcosC及正弦定理可得,2sinBcosC=sinA=sin(B+C)=sinBcosC+cosBsinC,由此可推得B=C,b=c,再由acosA+bcosB=ccosC,可推得A=
π
2
解答: 解:∵a=2bcosC,由正弦定理可得,
2sinBcosC=sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC-cosBsinC=0,即sin(B-C)=0,
∴B-C=0,∴B=C,∴b=c,
∴bcosB=ccosC,
∵acosA+bcosB=ccosC,∴acosA=0,
∵a≠0,∴cosA=0,∴A=
π
2
,
∴△ABC是等腰直角三角形.
點評:本題考查正弦定理、余弦定理,考查和角公式,判斷三角形形狀的基本方法是“化邊”或“化角”.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù) ①y=x+
1
x
(x≥2);②y=tanx+
1
tanx
;③y=x-3+
1
x-3
;④y=
x2+2
+
1
x2+2
.其中最小值為2的有(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在區(qū)間D上的函數(shù),任給x1,x2∈D,且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2
,則稱函數(shù)f(x)為區(qū)間D上的嚴格凸函數(shù).現(xiàn)給出下列命題:
①函數(shù)y=log2x與函數(shù)y=-x2在區(qū)間(0,+∞)上均為嚴格凸函數(shù);
②函數(shù)y=2x與y=tanx在(-1,1)均不為嚴格凸函數(shù);
③一定存在實數(shù)k,使得函數(shù)y=x+
k
x
在區(qū)間(-∞,0)上為嚴格凸函數(shù).
其中正確的命題個數(shù)為( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+ax-lnx(a∈R).
(Ⅰ)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,1]上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)過坐標原點O作曲線y=f(x)的切線,證明:切線有且僅有一條,且切點的橫坐標恒為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=xlnx.
(1)若不等式c<f(x)恒成立,求c的取值范圍;
(2)令f0(x)=f′(x),f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x);n是正整數(shù);
①寫出函數(shù)f1(x)、f2(x)、f3(x)、f4(x)的表達式,由此猜想fn(x)(n∈N*)的表達式;
②用數(shù)學歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AB是圓的直徑,PA垂直圓所在的平面,C是圓上任一點,D是線段PA的中點,E是線段AC上的一點.
求證:(Ⅰ)若E為線段AC中點,則DE∥平面PBC;
(Ⅱ)無論E在AC何處,都有BC⊥DE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若正數(shù)a,b,c滿足a+b+c=1.
(1)求證:
1
3
≤a2+b2+c2<1;
(2)求
1
2a+1
+
1
2b+1
+
1
2c+1
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市居民2009~2013年貨幣收入x與購買商品支出Y的統(tǒng)計資料如下表所示:
( 單 位:億元)
年份 2009 2010 2011 2012 2013
貨幣收入x 40 42 46 47 50
購買商品支出Y 33 34 37 40 41
(Ⅰ)畫出散點圖,判斷x與Y是否具有相關(guān)關(guān)系;
(Ⅱ)已知
b
=0.84,請寫出Y對x的回歸直線方程y=
b
x+
a
;并估計貨幣收入為52(億元)時,購買商品支出大致為多少億元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|z|2+(z+
.
z
)i=
3-i
2+i
,其中
.
z
是z的共軛復數(shù),求復數(shù)z.

查看答案和解析>>

同步練習冊答案