設(shè)Sn為等差數(shù)列{an}的前n項和,若a1=1,公差d=2,Sk+2-Sk=24,則k等于(  )
A.8 B.7 C.6D.5
D
∵Sk+2-Sk=ak+1+ak+2=a1+kd+a1+(k+1)d=2a1+(2k+1)d=2×1+(2k+1)×2=4k+4=24,∴k=5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)函數(shù)的零點從小到大排列,記為數(shù)列,求的前項和;
(2)若上恒成立,求實數(shù)的取值范圍;
(3)設(shè)點是函數(shù)圖象的交點,若直線同時與函數(shù),的圖象相切于點,且
函數(shù),的圖象位于直線的兩側(cè),則稱直線為函數(shù)的分切線.
探究:是否存在實數(shù),使得函數(shù)存在分切線?若存在,求出實數(shù)的值,并寫出分切線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項和為,,的等差中項().
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使不等式恒成立,若存在,求出
的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和,數(shù)列{bn}滿足b1=1,b3+b7=18,且(n≥2).(1)求數(shù)列{an}和{bn}的通項公式;(2)若,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}是一個公差為的等差數(shù)列,已知它的前10項和為,且a1,a2,a4 成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若,求數(shù)列的前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)在數(shù)列中,,
(1)設(shè).證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前n項和為,且,令.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(2)若,用數(shù)學(xué)歸納法證明是18的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}的前n項和為Sn,f(x)=,an=log2,則S2 013=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列的公差為d,若數(shù)列為遞減數(shù)列,則(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案