已知向量
a
=(-3,1),
b
=(1,-2),若
a
⊥(
a
+k
b
),則實(shí)數(shù)k=
 
分析:根據(jù)兩個(gè)向量的坐標(biāo),寫(xiě)出兩個(gè)向量的數(shù)乘與和的運(yùn)算結(jié)果,根據(jù)兩個(gè)向量的垂直關(guān)系,寫(xiě)出兩個(gè)向量的數(shù)量積等于0,得到關(guān)于k的方程,解方程即可.
解答:解:∵
a
=(-3,1),
b
=(1,-2),
a
⊥(
a
+k
b
),
∴9-3k+1-2k=0
∴k=2,
故答案為:2
點(diǎn)評(píng):本題考查數(shù)量積的坐標(biāo)表達(dá)式,是一個(gè)基礎(chǔ)題,題目主要考查數(shù)量積的坐標(biāo)形式,注意數(shù)字的運(yùn)算不要出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-3,2),
b
=(-1,0),且向量λ
a
+
b
a
-2
b
垂直,則實(shí)數(shù)λ的值為
-
1
7
-
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•天河區(qū)三模)設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量
a
=(x+
3
,my)
,向量
b
=(x-
3
,y)
,
a
b
,動(dòng)點(diǎn)M(x,y)的軌跡為曲線E.
(I)求曲線E的方程,并說(shuō)明該方程所表示曲線的形狀;
(II) 已知m=
3
4
,F(xiàn)(0,-1),直線l:y=kx+1與曲線E交于不同的兩點(diǎn)M、N,則△FMN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的實(shí)數(shù)k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•眉山二模)已知向量
a
=(2x-3,1)
,
b
=(x,-2)
,若
a
b
≥0
,則實(shí)數(shù)x的取值范圍是
(-∞,-
1
2
]∪[2,+∞)
(-∞,-
1
2
]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-3,4),
b
=(2,-1),λ為實(shí)數(shù),若向量
a
b
與向量
b
垂直,則λ=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(3,1),
b
=(k,3),若
a
b
,則k=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案