給定橢圓C:(a>b>0),稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”. 已知橢圓C的兩個(gè)焦點(diǎn)分別是,橢圓C上一動(dòng)點(diǎn)M1滿足
(Ⅰ)求橢圓C及其“伴隨圓”的方程
(Ⅱ)試探究y軸上是否存在點(diǎn)P(0,m)(m<0),使得過(guò)點(diǎn)P作直線l與橢圓C只有一個(gè)交點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為.若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(Ⅰ)由題意得:,半焦距,所以橢圓C的方程為,“伴隨圓”的方程為x2+y2=4.
(Ⅱ)假設(shè)y軸上存在點(diǎn)P(0,m)(m<0),則設(shè)過(guò)點(diǎn)P且與橢圓有一個(gè)交點(diǎn)的直線l為:y=kx+m,則 ,整理得(1+3k2)x2+6kmx+(3m2-3)=0,所以△=(6km)2-4(1+3k2)(3m2-3)=0,解3k2+1=m2,由此能夠?qū)С鰕軸上存在點(diǎn)P(0,-2).
解答:解:(Ⅰ)由題意得:,半焦距(2分)
則b=1橢圓C的方程為(3分)
“伴隨圓”的方程為x2+y2=4(5分)
(Ⅱ)假設(shè)y軸上存在點(diǎn)P(0,m)(m<0),
則設(shè)過(guò)點(diǎn)P且與橢圓有一個(gè)交點(diǎn)的直線l為:y=kx+m,(1分)
整理得(1+3k2)x2+6kmx+(3m2-3)=0(3分)
所以△=(6km)2-4(1+3k2)(3m2-3)=0,解3k2+1=m2①(5分)
又因?yàn)橹本l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,
則有化簡(jiǎn)得m2=2(k2+1)②(7分)
聯(lián)立①②解得,k2=1,m2=4,所以k=±1,m=-2(∵m<0)
所以y軸上存在點(diǎn)P(0,-2)(9分)
點(diǎn)評(píng):本題考查圓錐曲線的直線 的位置關(guān)系和綜合運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”.
(1)若橢圓C過(guò)點(diǎn)(
5
,0)
,且焦距為4,求“伴隨圓”的方程;
(2)如果直線x+y=3
2
與橢圓C的“伴隨圓”有且只有一個(gè)交點(diǎn),那么請(qǐng)你畫(huà)出動(dòng)點(diǎn)Q(a,b)軌跡的大致圖形;
(3)已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0)、F2
2
,0),橢圓C上一動(dòng)點(diǎn)M1滿足|
M1F1
|+|
M1F
2
|=2
3
.設(shè)點(diǎn)P是橢圓C的“伴隨圓”上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1、l2使得l1、l2與橢圓C都各只有一個(gè)交點(diǎn),且l1、l2分別交其“伴隨圓”于點(diǎn)M、N.當(dāng)P為“伴隨圓”與y軸正半軸的交點(diǎn)時(shí),求l1與l2的方程,并求線段|
MN
|
的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),稱(chēng)圓心在原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸上的一個(gè)端點(diǎn)到F的距離為
3

(Ⅰ)求橢圓C的方程和其“準(zhǔn)圓”方程.
(Ⅱ)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),且l1,l2分別交其“準(zhǔn)圓”于點(diǎn)M,N.
①當(dāng)P為“準(zhǔn)圓”與y軸正半軸的交點(diǎn)時(shí),求l1,l2的方程;
②求證:|MN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0)、B(0,-2),點(diǎn)C滿足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于兩點(diǎn)M、N,且以MN為直徑的圓過(guò)原點(diǎn),求證:
1
a2
+
1
b2
為定值
;
(3)在(2)的條件下,若橢圓的離心率不大于
2
2
,求橢圓長(zhǎng)軸長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年湖北省黃岡市高三三月調(diào)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

給定橢圓C:(a>b>0),稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”. 已知橢圓C的兩個(gè)焦點(diǎn)分別是,橢圓C上一動(dòng)點(diǎn)M1滿足
(Ⅰ)求橢圓C及其“伴隨圓”的方程
(Ⅱ)試探究y軸上是否存在點(diǎn)P(0,m)(m<0),使得過(guò)點(diǎn)P作直線l與橢圓C只有一個(gè)交點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為.若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案