已知三次函數(shù),

(1)若函數(shù)過點且在點處的切線方程是,求函數(shù)的解析式;

(2)在(1)的條件下,若對于區(qū)間上任意兩個自變量的值,都有,求實數(shù)的最小值。

 

【答案】

解:(1),故

(2)t的最小值是20

【解析】由在點處的切線方程是可得出,k==0;

列式求解;恒成立,則即最高點與最低點縱標差即可,轉化為求函數(shù)在上的問題

解:(1)函數(shù)過點,------------1分

,函數(shù)在點處的切線方程是,,-----------------------3分

解得,故--------------------5分

(2)由(1)知,令解得,-------------6分

在區(qū)間,-----------------8分

對于區(qū)間上任意兩個自變量的值

都有,---------------------9分

,所以t的最小值是20

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三次函數(shù)f(x)=x3+ax2-6x+b,a、b為實數(shù),f(0)=1,曲線y=f(x)在點(1,f(1))處切線的斜率為-6.
(1)求函數(shù)f(x)的解析式;
(2)若f(x)≤|2m-1|對任意的x∈(-2,2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三次函數(shù)f(x)=ax3-5x2+cx+d(a≠0)圖象上點(1,8)處的切線經(jīng)過點(3,0),并且f(x)在x=3處有極值.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若當x∈(0,m)時,f(x)>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)已知三次函數(shù)f(x)=ax3+bx2+cx(a,b,c∈R).
(1)若函數(shù)f(x)過點(-1,2)且在點(1,f(1))處的切線方程為y+2=0,求函數(shù)f(x)的解析式;
(2)當a=1時,若-2≤f(-1)≤1,-1≤f(1)≤3,試求f(2)的取值范圍;
(3)對?x∈[-1,1],都有|f′(x)|≤1,試求實數(shù)a的最大值,并求a取得最大值時f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三次函數(shù)f(x)=
1
3
ax3+
1
2
bx2-6x+1(x∈R),a,b為實常數(shù).
(1)若a=3,b=3時,求函數(shù)f(x)的極大、極小值;
(2)設函數(shù)g(x)=f′(x)+7,其中f′(x)是f(x)的導函數(shù),若g(x)的導函數(shù)為g′(x),g′(0)>0,g(x)與x軸有且僅有一個公共點,求
g(1)
g′(0)
的最小值.

查看答案和解析>>

同步練習冊答案