在區(qū)間[-3,3]上隨機取一個數(shù)x,使得|x+1|-|x-2|≥1成立的概率為________.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:填空題
記[x]為不超過實數(shù)x的最大整數(shù).例如,[2]=2,[1.5]=1,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1=a,xn+1= (n∈N*).現(xiàn)有下列命題:
①當(dāng)a=5時,數(shù)列{xn}的前3項依次為5,3,1;
②對數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時總有xn=xk;
③當(dāng)n≥1時,xn>-1;
④對某個正整數(shù)k,若xk+1≥xk,則xk=[].
其中的真命題有________.(寫出所有真命題的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-2導(dǎo)數(shù)及其應(yīng)用練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=x(a>0)的單調(diào)遞減區(qū)間是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)1-2算法與程序框圖等練習(xí)卷(解析版) 題型:解答題
某鎮(zhèn)政府為了更好地服務(wù)于農(nóng)民,派調(diào)查組到某村考察.據(jù)了解,該村有100戶農(nóng)民,且都從事蔬菜種植,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),該鎮(zhèn)政府決定動員部分農(nóng)民從事蔬菜加工.據(jù)估計,若能動員x(x>0)戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高2x%,而從事蔬菜加工的農(nóng)民平均每戶的年收入將為3 (a>0)萬元.
(1)在動員x戶農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動員前從事蔬菜種植的農(nóng)民的總年收入,求x的取值范圍;
(2)在(1)的條件下,要使這100戶農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)1-2算法與程序框圖等練習(xí)卷(解析版) 題型:選擇題
已知平面直角坐標系xOy上的區(qū)域D由不等式組給定,若M(x,y)為D上的動點,點A的坐標為(,1),則z=·的最大值為( ).
A.4 B.3 C.4 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:選擇題
設(shè)a,b,c,x,y,z均為正數(shù),且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,則等于( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:填空題
已知曲線C的極坐標方程為ρ=2cos θ,以極點為原點,極軸為x軸的正半軸建立直角坐標系,則曲線C的參數(shù)方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-1練習(xí)卷(解析版) 題型:填空題
如圖,AB是圓O的直徑,點C在圓O上,延長BC到D使BC=CD,過C作圓O的切線交AD于E.若AB=6,ED=2,則BC=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-3練習(xí)卷(解析版) 題型:解答題
已知A,B,C是橢圓W:+y2=1上的三個點,O是坐標原點.
(1)當(dāng)點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當(dāng)點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com