二項式(
2
x
-
x
4的展開式中的
1
x
系數(shù)是
24
24
分析:由二項式定理可得(
2
x
-
x
4的展開式的通項,可得x的指數(shù)為
3r-8
2
,令
3r-8
2
=-1,解可得r的值,將r的值代入通項可得含
1
x
的項,即可得
1
x
的系數(shù).
解答:解:根據(jù)題意,二項式(
2
x
-
x
4的展開式的通項為Tr+1=C4r
2
x
4-r(-
x
r=(-1)r×24-r×C4r×x
3r-8
2
,
3r-8
2
=-1,解可得r=2,
當r=2時,T3=24x-1=24
1
x
,即其展開式中的
1
x
系數(shù)是24;
故答案為24.
點評:本題考查二項式定理的應用,關鍵是由二項式定理正確得到二項式(
2
x
-
x
4的展開式的通項,其次注意分數(shù)指數(shù)冪的運算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=|x-4|+|x+6|的最小值為n,則二項式(x2+
2
x
)n
展開式中常數(shù)項是(  )
A、第10項B、第9項
C、第8項D、第7項

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟南二模)設
2
0
(2x-1)dx
=a,則二項式(x+
a
x
)4
的展開式中的常數(shù)項為
24
24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(2x-3y)10的展開式中,求:

(1)二項式系數(shù)的和;

(2)各項系數(shù)的和;

(3)奇數(shù)項的二項式系數(shù)和與偶數(shù)項的二項式系數(shù)和;

(4)奇數(shù)項系數(shù)和與偶數(shù)項系數(shù)和;

(5)x的奇次項系數(shù)和與x的偶次項系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)=|x-4|+|x+6|的最小值為n,則二項式(x2+
2
x
)n
展開式中常數(shù)項是( 。
A.第10項B.第9項C.第8項D.第7項

查看答案和解析>>

同步練習冊答案