直線l經(jīng)過點(diǎn)(1,1),若拋物線y2=x上存在兩點(diǎn)關(guān)于直線l對稱,求直線l斜率的取值范圍.
分析:設(shè)岀存在兩點(diǎn)關(guān)于直線對稱,則兩點(diǎn)連線與對稱軸垂直,兩點(diǎn)的中點(diǎn)在對稱軸上;將兩點(diǎn)代入拋物線作差,得到斜率與中點(diǎn)的關(guān)系,
據(jù)點(diǎn)在拋物線上,利用基本不等式求出斜率范圍.
解答:解:設(shè)直線l的方程為y-1=k(x-1),弦的兩個(gè)端點(diǎn)分別是A(x1,y1)、B(x2,y2),代入拋物線方程并作差得(y1+y2)(y1-y2)=x1-x2
∵kAB=
y1-y2
x1-x2
=-
1
k
,
∴y1+y2=-k.注意到AB的中點(diǎn)在直線l:y-1=k(x-1)上,∴x1+x2=1-
2
k

∴y12+y22=x1+x2=1-
2
k

由y12+y22
(y1+y2)2
2
,得1-
2
k
k2
2
?
(k+2)(k2-2k+2)
2k
<0
?-2<k<0.
點(diǎn)評:本題考查解決對稱問題的基本方法是利用兩點(diǎn)關(guān)于直線對稱時(shí),兩點(diǎn)連線與對稱軸垂直,兩點(diǎn)中點(diǎn)在對稱軸上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l經(jīng)過點(diǎn)(-1,1),則當(dāng)點(diǎn)(2,-1)與直線l的距離最大時(shí),直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l經(jīng)過點(diǎn)P(1,1)且與雙曲線x2-=1交于A、B兩點(diǎn),如果點(diǎn)P是線段AB的中點(diǎn),那么直線l的方程為(    )

A.2x-y-1=0         B.2x+y-3=0       C.x-2y+1=0        D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線l經(jīng)過點(diǎn)(1,1),若拋物線y2=x上存在兩點(diǎn)關(guān)于直線l對稱,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《3.2 兩條直線的位置關(guān)系》2013年高考數(shù)學(xué)優(yōu)化訓(xùn)練(解析版) 題型:填空題

設(shè)直線l經(jīng)過點(diǎn)(-1,1),則當(dāng)點(diǎn)(2,-1)與直線l的距離最大時(shí),直線l的方程為   

查看答案和解析>>

同步練習(xí)冊答案