【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx.
(1)當(dāng)x∈[0, ]時(shí),求f(x)的值域;
(2)用五點(diǎn)法在圖中作出y=f(x)在閉區(qū)間[﹣ , ]上的簡(jiǎn)圖;
(3)說(shuō)明f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎樣的變化得到?
【答案】
(1)解:∵f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx
=sin2x+ cos2x
=2sin(2x+ ),
∵x∈[0, ],2x+ ∈[ , ],
∴f(x)=2sin(2x+ )∈[﹣ ,2].
(2)解:列表:
2x+ | 0 |
| π |
| 2π |
x | ﹣ |
|
|
|
|
y | 0 | 2 | 0 | ﹣2 | 0 |
作圖:
(3)解:把y=sinx的圖象向左平移 個(gè)單位,可得函數(shù)y=sin(x+ )的圖象;
再把所得圖象上點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,可得函數(shù)y=sin(2x+ )的圖象;
再把所得圖象上的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,可得函數(shù)y=2sin(2x+ )的圖象.
【解析】(1)由條件利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=2sin(2x+ ),由x∈[0, ]根據(jù)正弦函數(shù)的定義域和值域即可得解.(2)用五點(diǎn)法作函數(shù)y=Asin(ωx+φ)在一個(gè)周期上的簡(jiǎn)圖.(3)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象和函數(shù)y=Asin(ωx+φ)的圖象變換,掌握描點(diǎn)法及其特例—五點(diǎn)作圖法(正、余弦曲線),三點(diǎn)二線作圖法(正、余切曲線);圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,定義在[﹣2,2]的偶函數(shù)f(x)的圖象如圖所示,則方程f(f(x))=0的實(shí)根個(gè)數(shù)為( )
A.3
B.4
C.5
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知不等式組 表示的平面區(qū)域?yàn)镈,則
(1)z=x2+y2的最小值為 .
(2)若函數(shù)y=|2x﹣1|+m的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是某高三學(xué)生進(jìn)入高中三年來(lái)的數(shù)學(xué)考試成績(jī)的莖葉圖,第1次到第第14次的考試成績(jī)依次記為A1 , A2 , …A14 , 如圖2是統(tǒng)計(jì)莖葉圖中成績(jī)?cè)谝欢ǚ秶鷥?nèi)考試次數(shù)的一個(gè)算法流程圖,那么算法流程圖輸出的結(jié)果是( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正實(shí)數(shù)a,b滿足a+b=1,則( )
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點(diǎn)在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知對(duì)任意平面向量 =(x,y),把 繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)θ得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(2,3),點(diǎn)B(2+2 ,1).把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn) 角得到點(diǎn)P,求點(diǎn)P的坐標(biāo).
(2)設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn) 后得到的點(diǎn)的軌跡方程是曲線y= ,求原來(lái)曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點(diǎn). (Ⅰ)證明:AC⊥D1E;
(Ⅱ)求DE與平面AD1E所成角的正弦值;
(Ⅲ)在棱AD上是否存在一點(diǎn)P,使得BP∥平面AD1E?若存在,求DP的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 =(3 sinx, cosx), =(cosx, cosx),f (x)= .
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)x∈[﹣ , ]時(shí),g(x)=f(x)+m的最大值為 ,求g(x)的最小值及相應(yīng)的x值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com