精英家教網 > 高中數學 > 題目詳情

已知數學公式,實數a、b、c滿足f(a)f(b)f(c)<0,且0<a<b<c,若實數x0是函數f(x)的一個零點,那么下列不等式中,不可能成立的是


  1. A.
    x0<a
  2. B.
    x0>b
  3. C.
    x0<c
  4. D.
    x0>c
D
分析:確定函數為減函數,進而可得f(a)、f(b)、f(c)中一項為負的、兩項為正的;或者三項都是負的,分類討論分別求得可能成立選項,從而得到答案.
解答:∵在(0,+∞)上是減函數,0<a<b<c,且 f(a)f(b)f(c)<0,
∴f(a)、f(b)、f(c)中一項為負的、兩項為正的;或者三項都是負的.
即f(c)<0,0<f(b)<f(a);或f(a)<f(b)<f(c)<0.
由于實數x0是函數y=f(x)的一個零點,
當f(c)<0,0<f(b)<f(a)時,b<x0<c,此時B,C成立.
當f(a)<f(b)<f(c)<0時,x0<a,此時A成立.
綜上可得,D不可能成立
故選D.
點評:本題主要考查函數的零點的定義,判斷函數的零點所在的區(qū)間的方法,體現(xiàn)了分類討論的數學思想,屬于中檔題
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正實數a,b,c成等差數列,且a+b+c=15.
(I)求b的值;
(II)若a+1,b+1,c+4成等比數列;
(i)求a,c的值;
(ii)若a,b,c為等差數列{an}的前三項,求數列{anxn-1}(x≠0)的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知直線C1
x=1+tcosα
y=tsinα
(t為參數),C2
x=cosθ
y=sinθ
(θ為參數).
(Ⅰ)當α=
π
3
時,求C1與C2的交點坐標;
(Ⅱ)過坐標原點O做C1的垂線,垂足為A,P為OA中點,當α變化時,求P點的軌跡的參數方程.
(2)已知正實數a、b、c滿足a2+4b2+c2=3.
(I)求a+2b+c的最大值;
(II)若不等式|x-5|-|x-1|≥a+2b+c恒成立,求實數x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1;
(Ⅱ)請寫出△ABC在矩陣M-1對應的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標系與參數方程
過P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數)交于A,B兩點.
(Ⅰ)求曲線E的普通方程及l(fā)的參數方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5 不等式證明選講)
已知正實數a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

選考題部分
(1)(選修4-4 參數方程與極坐標)(本小題滿分7分)
在極坐標系中,過曲線L:ρsin2θ=2acosθ(a>0)外的一點A(2
5
,π+θ)
(其中tanθ=2,θ為銳角)作平行于θ=
π
4
(ρ∈R)
的直線l與曲線分別交于B,C.
(Ⅰ) 寫出曲線L和直線l的普通方程(以極點為原點,極軸為x軸的正半軸建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比數列,求a的值.
(2)(選修4-5 不等式證明選講)(本小題滿分7分)
已知正實數a、b、c滿足條件a+b+c=3,
(Ⅰ) 求證:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正實數a、b、c滿足條件a+b+c=3,
(Ⅰ) 求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

同步練習冊答案