已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)()(n∈N*)在函數(shù)y=x2+1的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若列數(shù){bn}滿足b1=1,bn+1=bn+,求證:bn•bn+2<b2n+1
【答案】分析:(1)將點(diǎn)代入到函數(shù)解析式中即可;
(2)比較代數(shù)式大小時(shí),可以用作差的方法.
解答:解:解法一:
(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以數(shù)列{an}是以1為首項(xiàng),公差為1的等差數(shù)列.
故an=1+(a-1)×1=n.

(Ⅱ)由(Ⅰ)知:an=n從而bn+1-bn=2n
bn=(bn-bn-1)+(bn-1-bn-2)++(b2-b1)+b1
=2n-1+2n-2++2+1
=
∵bn•bn+2-bn+12=(2n-1)(2n+2-1)-(2n+1-1)2
=(22n+2-2n-2n+2+1)-(22n+2-2•2n+1+1)
=-2n<0
∴bn•bn+2<bn+12

解法二:
(Ⅰ)同解法一.
(Ⅱ)∵b2=1
bn•bn+2-bn+12=(bn+1-2n)(bn+1+2n+1)-bn+12
=2n+1•bn+1-2n•bn+1-2n•2n+1

=2n(bn+1-2n+1
=2n(bn+2n-2n+1
=2n(bn-2n
=…
=2n(b1-2)
=-2n<0
∴bn•bn+2<bn+12
點(diǎn)評(píng):高考考點(diǎn):本小題主要考查等差數(shù)列、等比數(shù)列等基本知識(shí),考查轉(zhuǎn)化與化歸思想,考查推理與運(yùn)算能力.
易錯(cuò)提醒:第二問(wèn)中的比較大小直接做商的話還要說(shuō)明bn的正負(fù),而往往很多學(xué)生不注意.
備考提示:對(duì)于遞推數(shù)列要學(xué)生掌握常見(jiàn)求法,至少線性的要懂得處理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山二模)設(shè)a1≤a2≤…≤an,b1≤b2≤…≤bn為兩組實(shí)數(shù),c1,c2,…,cn是b1,b2,…,bn的任一排列,我們稱S=a1c1+a2c2+a3c3+…+ancn為兩組實(shí)數(shù)的亂序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1為反序和,S2=a1b1+a2b2+a3b3+…+anbn 為順序和.根據(jù)排序原理有:S1≤S≤S2即:反序和≤亂序和≤順序和.給出下列命題:
①數(shù)組(2,4,6,8)和(1,3,5,7)的反序和為60;
②若A=
x
2
1
+
x
2
2
+…+
x
2
n
,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正數(shù),則A≤B;
③設(shè)正實(shí)數(shù)a1,a2,a3的任一排列為c1,c2,c3
a1
c1
+
a2
c2
+
a3
c3
的最小值為3;
④已知正實(shí)數(shù)x1,x2,…,xn滿足x1+x2+…+xn=P,P為定值,則F=
x
2
1
x2
+
x
2
2
x3
+…+
x
2
n-1
xn
+
x
2
n
x1
的最小值為
P
2

其中所有正確命題的序號(hào)為
①③
①③
.(把所有正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省眉山市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)a1≤a2≤…≤an,b1≤b2≤…≤bn為兩組實(shí)數(shù),c1,c2,…,cn是b1,b2,…,bn的任一排列,我們稱S=a1c1+a2c2+a3c3+…+ancn為兩組實(shí)數(shù)的亂序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1為反序和,S2=a1b1+a2b2+a3b3+…+anbn 為順序和.根據(jù)排序原理有:S1≤S≤S2即:反序和≤亂序和≤順序和.給出下列命題:
①數(shù)組(2,4,6,8)和(1,3,5,7)的反序和為60;
②若A=++…+,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正數(shù),則A≤B;
③設(shè)正實(shí)數(shù)a1,a2,a3的任一排列為c1,c2,c3++的最小值為3;
④已知正實(shí)數(shù)x1,x2,…,xn滿足x1+x2+…+xn=P,P為定值,則F=++…++的最小值為
其中所有正確命題的序號(hào)為    .(把所有正確命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案