14.已知函數(shù)$f(x)=\frac{1-x}{x}+lnx$,f'(x)為f(x)的導函數(shù),則f'(2)的值為$\frac{1}{4}$.

分析 求函數(shù)的導數(shù),即可得到結(jié)論.

解答 解:$f(x)=\frac{1-x}{x}+lnx$=$\frac{1}{x}$-1+lnx
∴函數(shù)的導數(shù)f′(x)=-$\frac{1}{{x}^{2}}$+$\frac{1}{x}$,
則f′(2)=-$\frac{1}{4}$+$\frac{1}{2}$=$\frac{1}{4}$
故答案為:$\frac{1}{4}$

點評 本題主要考查導數(shù)的計算,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.某市居民自來水收費標準如下:每戶每月用水不超過5噸時,每噸為2.6元,當用水超過5噸時,超過部分每噸4元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x,3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費34.7元,分別求甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.頂點在原點,對稱軸是y軸,且頂點與焦點的距離等于6的拋物線標準方程是x2=±24y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知z1=a+3i,z2=3-4i,若$\frac{z_1}{z_2}$為純虛數(shù),則實數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.一個袋子里裝有紅、黃、綠三種顏色的球各2個,這6個球除顏色外完全相同,從中摸出2個球,則這2個球中至少有1個是紅球的概率是( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{8}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,D為BC的中點,AB=3,AC=AA1=4,BC=5.
(1)求證:AB⊥A1C;
(2)求證:A1B∥平面ADC1
(3)求直三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在三棱錐P-ABC中,平面PAC⊥平面ABC,PA=PC=BA=BC,則直線PB與平面PAC所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.△ABC中,已知A=$\frac{π}{3}$,a=10.
(1)若B=$\frac{π}{4}$,求△ABC的面積;
(2)求b的取值范圍;
(3)求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知一元二次不等式f(x)>0的解集為{x|x<-1或x>$\frac{1}{2}$},則f(10x)>0的解集為( 。
A.{x|x<-1或x>lg2}B.{x|-1<x<lg2}C.{x|x>-lg2}D.{x|x<-lg2}

查看答案和解析>>

同步練習冊答案