A、BC是半徑為1的球面上的三點(diǎn),AB、BCCA每?jī)牲c(diǎn)間的球面距離為,O為球心,求:

(1)∠AOB的大小;

(2)球心O到截面ABC的距離

 

答案:
解析:

解:(1)連結(jié)AOBO、CO,∠AOB=

(2)過(guò)A、B、C的截面是△ABC的外接圓,四面體OABC是頂點(diǎn)為O、側(cè)面都是等腰直角三角形的正棱錐

設(shè)為截面圓的圓心,則AB=BC=CA=,

OˊA=··=,

,

O到截面的距離是

點(diǎn)評(píng):球面距離l、球的半徑R、球心角(弧度)三者之間的關(guān)系是l=a已知球面距離時(shí),經(jīng)常把球面距離轉(zhuǎn)化成球心角

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B、C是半徑為1的球面上的三點(diǎn),B、C兩點(diǎn)間的球面距離為
π
3
,點(diǎn)A與B、C兩點(diǎn)間的球面距離均為
π
2
,O為球心,
求:(1)∠AOB、∠BOC的大小;
(2)球心O到截面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A,B,C是半徑為1的圓上三點(diǎn),若AB=
3
,則
AB
AC
的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A、B、C是半徑為1的球面上三點(diǎn),B、C間的球面距離為
π
3
,點(diǎn)A與B、C兩點(diǎn)間的球面距離均為
π
2
,且球心為O,求:
(1)∠AOB,∠BOC的大小;
(2)球心到截面ABC的距離;
(3)球的內(nèi)接正方體的表面積與球面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c是半徑為1的圓內(nèi)接△ABC的三邊,且S△ABC=1,則以sinA,sinB,sinC為三邊組成的三角形的面積為
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A、B、C是半徑為1的球面上三點(diǎn),B、C兩點(diǎn)間的球面距離為,點(diǎn)A與B、C兩點(diǎn)間的球面距離為,球心為O,求:

(1)∠BOC、∠AOB的大小;

(2)球心到截面ABC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案