分析 不等式4x-m(4x+2x+1)≥0對(duì)于任意的x∈[0,1]恒成立⇒m≤$\frac{{4}^{x}}{{4}^{x}{+2}^{x}+1}$=$\frac{1}{{2}^{-2x}{+2}^{-x}+1}$(0≤x≤1)恒成立,構(gòu)造函數(shù)f(x)=2-2x+2-x+1,利用配方法與指數(shù)函數(shù)單調(diào)性可求得f(x)max=3,從而可得實(shí)數(shù)m的取值范圍.
解答 解:∵4x-m(4x+2x+1)≥0對(duì)于任意的x∈[0,1]恒成立,
∴m≤$\frac{{4}^{x}}{{4}^{x}{+2}^{x}+1}$=$\frac{1}{{2}^{-2x}{+2}^{-x}+1}$(0≤x≤1)恒成立,
令f(x)=2-2x+2-x+1=(2-x+$\frac{1}{2}$)2+$\frac{3}{4}$,
∵x∈[0,1],∴2-x∈[$\frac{1}{2}$,1],f(x)在區(qū)間[0,1]上單調(diào)遞減,
∴f(x)max=f(0)=3,
∴m≤$\frac{1}{3}$,
故答案為:(-∞,$\frac{1}{3}$].
點(diǎn)評(píng) 本題考查函數(shù)恒成立問題,分離參數(shù)m是關(guān)鍵,考查配方法與指數(shù)函數(shù)單調(diào)性的應(yīng)用,突出考查等價(jià)轉(zhuǎn)化思想與運(yùn)算求解能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
醫(yī)生人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.2 | x | 0.2 | 0.04 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-5)∪(5,+∞) | B. | (-5,-2)∪(2,5) | C. | (-∞,-5)∪(-2,0) | D. | (-∞,-5)∪(-2,0)∪(2,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{8}{15}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com