如圖,正方體的棱長(zhǎng)為1,B′C∩BC′=O,求:
(1)AO與A′C′所成角;
(2)AO與平面ABCD所成角的正切值;
(3)平面AOB與平面AOC所成角.
分析:(1)根據(jù)A′C′∥AC,可得AO與A′C′所成角就是∠OAC,解Rt△AOC,求出∠OAC的大小.
(2)如圖,作OE⊥BC于E,連接AE,由平面BC′⊥平面ABCD,得OE⊥平面ABCD,∠OAE為OA與平面ABCD所成角,解在Rt△OAE,求出tan∠OAE的大小.
(3)由OC⊥OA,OC⊥OB,可知OC⊥平面AOB,又OC?平面AOC,故平面AOB⊥平面AOC,從而得到平面AOB與平面AOC所成角為90°.
解答:解:(1)∵A′C′∥AC,∴AO與A′C′所成角就是∠OAC.∵OC⊥OB,AB⊥平面BC′,∴OC⊥OA,
在Rt△AOC中,OC═OC=
2
2
,AC=
2
,∴∠OAC=30°.(4分)
(2)如圖,作OE⊥BC于E,連接AE,∵平面BC′⊥平面ABCD,∴OE⊥平面ABCD,∠OAE為OA與平面ABCD所成角.
在Rt△OAE中,OE=
1
2
AE=
12+(
1
2
)
2
=
5
2
,∴tan∠OAE=
OE
AE
=
5
5
.(9分)
(3)∵OC⊥OA,OC⊥OB,∴OC⊥平面AOB.又∵OC?平面AOC,∴平面AOB⊥平面AOC,即平面AOB與平面AOC所成角為90°.(13分) 
點(diǎn)評(píng):本題主要考查異面直線所成的角的定義和求法,求直線和平面所成的角,求二面角的大小的方法,找出這些角,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方體的棱長(zhǎng)為1,C、D分別是兩條棱的中點(diǎn),A、B、M是頂點(diǎn),那么點(diǎn)M到截面ABCD的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方體的棱長(zhǎng)為a,將正方體的六個(gè)面的中心連接起來(lái),構(gòu)成一個(gè)八面體,這個(gè)八面體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體的棱長(zhǎng)為1,線段B′D′上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),EF=
3
2
,則下列結(jié)論中錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆黑龍江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:選擇題

如圖,正方體的棱長(zhǎng)為,點(diǎn)在棱上,

,點(diǎn)是平面上的動(dòng)點(diǎn),且動(dòng)點(diǎn)到直線

的距離與點(diǎn)到點(diǎn)的距離的平方差為,則動(dòng)點(diǎn)的軌跡是(  )

A.圓   B.拋物線   C.雙曲線     D.直線

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案