設(shè)過點(diǎn)的直線與橢圓相交于A,B兩個不同的點(diǎn),且.記O為坐標(biāo)原點(diǎn).求的面積取得最大值時的橢圓方程.

 

 

 

【答案】

解:依題意,直線顯然不平行于坐標(biāo)軸,故可設(shè)直線方程為

代入,得

            ① ………………………… (2分)

由直線l與橢圓相交于兩個不同的點(diǎn),得

              ②    ……………… (3分)

設(shè)由①,得

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202511709374394/SYS201205220252345156630850_DA.files/image008.png">,代入上式,得  ……………(5分)

于是,△OAB的面積

                       ………………(8分)

其中,上式取等號的條件是 

可得

將這兩組值分別代入①,均可解出滿足②

所以,△OAB的面積取得最大值的橢圓方程是 ………………(10分)

 

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)如圖,橢圓E:
x2
a2
+
y2
b2
 =1(a>b>0)
的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=
1
2
.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動直線l:y=kx+m與橢圓E有且只有一個公共點(diǎn)P,且與直線x=4相較于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•大連一模)設(shè)離心率e=
1
2
的橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,P是x軸正半軸上一點(diǎn),以PF1為直徑的圓經(jīng)過橢圓M短軸端點(diǎn),且該圓和直線x+
3
y+3=0
相切,過點(diǎn)P的直線與橢圓M相交于相異兩點(diǎn)A、C.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若相異兩點(diǎn)A、B關(guān)于x軸對稱,直線BC交x軸與點(diǎn)Q,求
QA
QC
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是方程x2+x•cotθ-cosθ=0的兩個不等的實(shí)數(shù)根,那么過點(diǎn)A(a,a2)和B(b,b2)的直線與橢圓x2+
y2
2
=1
的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點(diǎn)N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”.
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點(diǎn)N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過N點(diǎn)任意作一條直線,交橢圓C于A、B,交l于M點(diǎn)(異于A、B),設(shè)
MA
=λ1
AN
MB
=λ2
BN
,問λ12是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)是方程x=0的兩個實(shí)根,那么過點(diǎn))的直線與橢圓的位置關(guān)系是

A.相交                B. 相切          C.相交或相切        D.相離

 

查看答案和解析>>

同步練習(xí)冊答案