已知tanα和tanβ是一元二次方程3x2+5x-2=0的兩根根,且0°<α<90°,90°<β<180°,求α+β的值.
考點(diǎn):不等式的基本性質(zhì)
專題:不等式的解法及應(yīng)用
分析:由條件利用韋達(dá)定理、兩角和的正切公式求得tan(α+β)=-1,再結(jié)合α+β的范圍,求得α+β的值.
解答: 解:由題意可得tanα+tanβ=-
5
3
,tanα•tanβ=-
2
3
,
∴tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=-1.
再結(jié)合0°<α<90°,90°<β<180°,可得α+β∈(90°,270°),
∴α+β=135°.
點(diǎn)評(píng):本題主要考查韋達(dá)定理、兩角和的正切公式,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}(n∈N*)的前n項(xiàng)和為Sn,數(shù)列{
Sn
n
}是首項(xiàng)為0,公差為
1
2
的等差數(shù)列.
(1)設(shè)bn=
4
15
•(-2)n(n∈N*),對(duì)任意的正整數(shù)k,將集合{b2k-1,b2k,b2k+1}中的三個(gè)元素排成一個(gè)遞增的等差數(shù)列,其公差為dk,求證:數(shù)列{dk}為等比數(shù)列;
(2)對(duì)(1)題中的dk,求集合{x|dk<x<dk+1,x∈Z}的元素個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x2=
y
8
的焦點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a-2b+c=0,3a+b-2c=0,則sinA:sinB:sinC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
(1)sin(360°-α)=-sinα;
(2)cos(360°-α)=cosα;
(3)tan(360°-α)=-tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S7=49,5是a1和a5的等差中項(xiàng).
(1)求an與Sn
(2)證明:當(dāng)n≥2時(shí),有
1
S1
+
1
S2
+…+
1
Sn
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,分別畫出函數(shù)圖象在這點(diǎn)附近的大致形狀:
(1)f(1)=-5,f′(1)=-1;
(2)f(5)=10,f′(5)=15;
(3)f(10)=20,f′(10)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系xOy中,點(diǎn)P是單位圓上的動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線與射線y=
3
x
(x≥0)交于點(diǎn)Q,記∠xOP=α,且α∈(-
π
2
,
π
2

(1)若sinα=
1
3
,求cos∠POQ
(2)求
OP
OQ
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=1,公差d=2,則等差數(shù)列{an}的前10項(xiàng)和為( 。
A、100B、90
C、-90D、-100

查看答案和解析>>

同步練習(xí)冊(cè)答案