如圖,已知半徑為1的⊙O1軸交于兩點,為⊙O1的切線,切點為,且在第一象限,圓心的坐標為,二次函數(shù)的圖象經過兩點.

(1)求二次函數(shù)的解析式;

(2)求切線的函數(shù)解析式;

(3)線段上是否存在一點,使得以為頂點的三角形與相似.若存在,請求出所有符合條件的點的坐標;若不存在,請說明理由.

解:(1)圓心的坐標為,⊙O1半徑為1,,……1分

二次函數(shù)的圖象經過點,可得方程組  ……2分

解得:二次函數(shù)解析式為        ………………4分

(2)由題意易知所求直線的斜率存在且大于0,設切線

由點到直線的距離,可得                   ………………6分

解得(舍去)切線的函數(shù)解析式為…………8分

(3)存在.

①過點軸,與交于點.可得

則由,解得          ………………11分

②過點,垂足為, 可得

則由,解得           

符合條件的點坐標有,          ………………14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知半徑為r的圓M的內接四邊形ABCD的對角線AC和BD相互垂直且交點為P.
精英家教網
(1)若四邊形ABCD中的一條對角線AC的長度為d(0<d<2r),試求:四邊形ABCD面積的最大值;
(2)試探究:當點P運動到什么位置時,四邊形ABCD的面積取得最大值,最大值為多少?
(3)對于之前小題的研究結論,我們可以將其類比到橢圓的情形.如圖2,設平面直角坐標系中,已知橢圓Γ:
x2
a2
+
y2
b2
=1
(a>b>0)的內接四邊形ABCD的對角線AC和BD相互垂直且交于點P.試提出一個由類比獲得的猜想,并嘗試給予證明或反例否定.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,已知半徑為1的⊙O1與x軸交于A,B兩點,OM為⊙O1的切線,切點為M,且M在第一象限,圓心O1的坐標為(2,0),二次函數(shù)y=-x2+bx+c的圖象經過A,B兩點.
(1)求二次函數(shù)的解析式;
(2)求切線OM的函數(shù)解析式;
(3)線段OM上是否存在一點P,使得以P,O,A為頂點的三角形與△OO1M相似.若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海普陀區(qū)高考數(shù)學三模試卷(文理合卷)(解析版) 題型:解答題

如圖,已知半徑為r的圓M的內接四邊形ABCD的對角線AC和BD相互垂直且交點為P.

(1)若四邊形ABCD中的一條對角線AC的長度為d(0<d<2r),試求:四邊形ABCD面積的最大值;
(2)試探究:當點P運動到什么位置時,四邊形ABCD的面積取得最大值,最大值為多少?
(3)對于之前小題的研究結論,我們可以將其類比到橢圓的情形.如圖2,設平面直角坐標系中,已知橢圓(a>b>0)的內接四邊形ABCD的對角線AC和BD相互垂直且交于點P.試提出一個由類比獲得的猜想,并嘗試給予證明或反例否定.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市普陀區(qū)高考數(shù)學二模試卷(文理合卷)(解析版) 題型:解答題

如圖,已知半徑為r的圓M的內接四邊形ABCD的對角線AC和BD相互垂直且交點為P.

(1)若四邊形ABCD中的一條對角線AC的長度為d(0<d<2r),試求:四邊形ABCD面積的最大值;
(2)試探究:當點P運動到什么位置時,四邊形ABCD的面積取得最大值,最大值為多少?
(3)對于之前小題的研究結論,我們可以將其類比到橢圓的情形.如圖2,設平面直角坐標系中,已知橢圓(a>b>0)的內接四邊形ABCD的對角線AC和BD相互垂直且交于點P.試提出一個由類比獲得的猜想,并嘗試給予證明或反例否定.

查看答案和解析>>

同步練習冊答案