如圖,點A1、A2是線段AB的三等分點,

(1)求證:;

(2)一般地,如果點A1,A2,…,An-1是AB的n(n≥3)等分點,請寫出一個結(jié)論,使(1)為所寫結(jié)論的一個特例.并證明你寫的結(jié)論.

(1)∵,

()=,

同理,

.

(2)一般結(jié)論為

=…=.

證明:∵,

,

,

.

注:也可以將結(jié)論推廣為

+…+(),證明類似,證明略.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以A1,A2為焦點的雙曲線E與半徑為c的圓O相交于C,D,C1,D1,連接CC1與OB交于點H,且有:
OH
=(3+2
3
)
HB
.其中A1,A2,B是圓O與坐標軸的交點,c為雙曲線的半焦距.
(1)當(dāng)c=1時,求雙曲線E的方程;
(2)試證:對任意正實數(shù)c,雙曲線E的離心率為常數(shù).
(3)連接A1C與雙曲線E交于F,是否存在
實數(shù)λ,使
A1F
FC
恒成立,若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以A1、A2為焦 點的雙曲線E與半徑為c的圓O相交于CD、C1、D1,連接CC1OB交于點H,且有是圓O與坐標軸的交點,c為雙曲線的半焦距.

(1)當(dāng)c=1時,求雙曲線E的方程;

(2)試證:對任意正實數(shù)c,雙曲線E的離心率為常數(shù);

(3)連接A1C,與雙曲線E交于點F,是否存在實數(shù),使恒成立?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以A1、A2為焦 點的雙曲線E與半徑為c的圓O相交于CD、C1、D1,連接CC1OB交于點H,且有是圓O與坐標軸的交點,c為雙曲線的半焦距.

(1)當(dāng)c=1時,求雙曲線E的方程;

(2)試證:對任意正實數(shù)c,雙曲線E的離心率為常數(shù);

(3)連接A1C,與雙曲線E交于點F,是否存在實數(shù),使恒成立?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)壓軸試卷集錦(10)(解析版) 題型:解答題

如圖,以A1,A2為焦點的雙曲線E與半徑為c的圓O相交于C,D,C1,D1,連接CC1與OB交于點H,且有:.其中A1,A2,B是圓O與坐標軸的交點,c為雙曲線的半焦距.
(1)當(dāng)c=1時,求雙曲線E的方程;
(2)試證:對任意正實數(shù)c,雙曲線E的離心率為常數(shù).
(3)連接A1C與雙曲線E交于F,是否存在
實數(shù)λ,使恒成立,若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案