12.函數(shù)f(x)=lg(2-x)定義域?yàn)椋?∞,2).

分析 直接利用對(duì)數(shù)的真數(shù)大于0,求解即可.

解答 解:要使函數(shù)有意義,可得2-x>0,即x<2.
函數(shù)f(x)=lg(2-x)定義域?yàn)椋海?∞,2).
故答案為:(-∞,2).

點(diǎn)評(píng) 本題考查函數(shù)的定義域的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=$\frac{b-x}{a{x}^{2}+1}$在定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=-$\frac{2}{5}$
(1)試確定函數(shù)f(x)的解析式
(2)用定義證明:f(x)在(-1,1)上是減函數(shù)
(3)若f(a-1)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.經(jīng)過點(diǎn)A($\sqrt{3}$,-1),且傾斜角為60°的直線方程為( 。
A.$\sqrt{3}$x-y-4=0B.$\sqrt{3}$x+y-2=0C.$\sqrt{3}$x-y-2=0D.$\sqrt{3}$x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1+a2=10,S5=40.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}是等差數(shù)列,a1=1,a2+a6=20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)公式為bn=loga(1+$\frac{1}{{a}_{n}}$)(a>1),記Sn是數(shù)列{bn}的前n項(xiàng)和,證明:3Sn>logaan+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=-x2+m在x∈[m,+∞)上為減函數(shù),則m的取值范圍是m≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)向量$\overrightarrow{OA}=(5+cosθ,4+sinθ)$,$\overrightarrow{OB}=(2,0)$,則$|\overrightarrow{AB}|$的取值范圍是[4,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,正方體ABCD-A1B1C1D1,E,F(xiàn)分別在AB1,BC1上,且$\frac{{B}_{1}E}{AE}$=$\frac{{C}_{1}F}{BF}$=2,過EF做一個(gè)平面和面ABCD相交,并找到交線,寫出作法.(注意:交線必須是由兩個(gè)確定的點(diǎn)的連線)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x>1}\\{kx-2,x≤1}\end{array}\right.$是定義在R上的增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案