【題目】已知函數(shù)f(x)=x3﹣ax,g(x)= x2﹣lnx﹣ .
(1)若f(x)和g(x)在同一點處有相同的極值,求實數(shù)a的值;
(2)對于一切x∈(0,+∞),有不等式f(x)≥2xg(x)﹣x2+5x﹣3恒成立,求實數(shù)a的取值范圍;
(3)設(shè)G(x)= x2﹣ ﹣g(x),求證:G(x)> ﹣ .
【答案】
(1)解:∵g′(x)=x﹣ = ,∴當(dāng)x∈(0,1)時,g'(x)<0,則g(x)單調(diào)遞減;當(dāng)x∈(1,+∞)時,g'(x)>0,則g(x)單調(diào)遞增.∴g(x)極小值=g(1)=﹣2
又∵f(x)和g(x)在同一點處有相同的極值,
∴f(1)=1﹣a=﹣2,即a=3
(2)解:若使對于一切x∈(0,+∞),不等式f(x)≥2xg(x)﹣x2+5x﹣3恒成立,則只需使得不等式 恒成立,即只需
設(shè) ,則 ,
∴當(dāng)x∈(0,1)時,t'(x)<0,則t(x)單調(diào)遞減;當(dāng)x∈(1,+∞)時,t'(x)>0,則t(x)單調(diào)遞增.
∴t(x)最小值=t(1)=4,
∴a≤4,即a的取值范圍為(﹣∞,4]
(3)解:若證 ,則只需證明 ,即證
設(shè)m(x)=xlnx,則m'(x)=lnx+1,由于m(x)在 單調(diào)遞減,在 單調(diào)遞增,所以 ;設(shè) ,則 ,由于n(x)在(0,1)單調(diào)遞增,在(1,+∞)單調(diào)遞減,所以 .
所以m(x)≥n(x)又由于m(x)與n(x)不在同一個變量時取得最值,即m(x)>n(x)
綜上所述,
【解析】(1)求出函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的符號,求出函數(shù)的極小值,然后列出方程求解a 即可.(2)使對于一切x∈(0,+∞),不等式f(x)≥2xg(x)﹣x2+5x﹣3恒成立,轉(zhuǎn)化為 恒成立,只需 ,構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)求解函數(shù)的最小值,推出a的范圍即可.(3)若證 ,則只需證明 ,即證 ,構(gòu)造函數(shù)設(shè)m(x)=xlnx,利用函數(shù)的單調(diào)性求解函數(shù)的極值,推出結(jié)果即可.
【考點精析】利用函數(shù)的極值與導(dǎo)數(shù)對題目進行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin(ωx+φ)(ω>0,﹣ <φ< ),A( ,0)為f(x)圖象的對稱中心,B,C是該圖象上相鄰的最高點和最低點,若BC=4,則f(x)的單調(diào)遞增區(qū)間是( )
A.(2k﹣ ,2k+ ),k∈Z
B.(2kπ﹣ π,2kπ+ π),k∈Z
C.(4k﹣ ,4k+ ),k∈Z
D.(4kπ﹣ π,4kπ+ π),k∈Z
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=eax(a≠0).
(1)當(dāng) 時,令 (x>0),求函數(shù)g(x)在[m,m+1](m>0)上的最小值;
(2)若對于一切x∈R,f(x)﹣x﹣1≥0恒成立,求a的取值集合;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 5 | ||
女 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為 .
(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其他方面的排查,記選出患胃病的女性人數(shù)為ξ,求ξ的分布列,數(shù)學(xué)期望以及方差;大氣污染會引起各種疾病,試淺談日常生活中如何減少大氣污染.
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式K2= 其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)滿足:①對于任意的x∈R,都有f(x+2)=f(x﹣2);②函數(shù)y=f(x+2)是偶函數(shù);③當(dāng)x∈(0,2]時,f(x)=ex﹣ ,a=f(﹣5),b=f( ).c=f( ),則a,b,c的大小關(guān)系是( )
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a和b是任意非零實數(shù).
(1)求 的最小值.
(2)若不等式|2a+b|+|2a﹣b|≥|a|(|2+x|+|2﹣x|)恒成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面A1B1C1 , AA1=AC=BC=1,∠ACB=90°,D是A1B1的中點,F(xiàn)是BB1上的點,AB1 , DF交于點E,且AB1⊥DF,則下列結(jié)論中不正確的是( )
A.CE與BC1異面且垂直
B.AB1⊥C1F
C.△C1DF是直角三角形
D.DF的長為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(a,b)是區(qū)域 內(nèi)的任意一點,則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com