20.如圖△ABC,點(diǎn)D是BC中點(diǎn),$\overrightarrow{AF}$=2$\overrightarrow{FB}$,CF和AD交于點(diǎn)E,設(shè)$\overrightarrow{AD}$=a,$\overrightarrow{AB}$=b.
(1)以a,b為基底表示向量$\overrightarrow{AC}$,$\overrightarrow{FC}$.
(2)若$\overrightarrow{AE}$=λ$\overrightarrow{AD}$,求實(shí)數(shù)λ的值.

分析 (1)根據(jù)向量的加減的幾何意義即可求出,
(2)根據(jù)向量共線定理即可求出.

解答 解:(1)因?yàn)辄c(diǎn)D是BC中點(diǎn),
所以2$\overrightarrow{a}$=$\overrightarrow{AC}$+$\overrightarrow$,即$\overrightarrow{AC}$=2$\overrightarrow{a}$-$\overrightarrow$,
所以$\overrightarrow{FC}$=$\overrightarrow{AC}$-$\overrightarrow{AF}$=2$\overrightarrow{a}$-$\overrightarrow$-$\frac{2\overrightarrow}{3}$=2$\overrightarrow{a}$-$\frac{5}{3}$$\overrightarrow$,
(2)$\overrightarrow{AE}$=λ$\overrightarrow{AD}$=$\frac{λ}{2}$($\overrightarrow{AC}$+$\overrightarrow{AB}$)=$\frac{λ}{2}$$\overrightarrow{AC}$+$\frac{3λ}{4}$$\overrightarrow{AF}$,
因?yàn)辄c(diǎn)C,E,F(xiàn)共線,所以$\frac{λ}{2}$+$\frac{3}{4}$λ=1,所以λ=$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查平面向量的基本定理及其意義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,則z+z2-z3=(  )
A.2zB.-2zC.2$\overline{z}$D.-2$\overline{z}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知曲線C的極坐標(biāo)方程是ρ=2cosθ,若以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,且取相同的單位長(zhǎng)度建立平面直角坐標(biāo)系,則直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線l與曲線C交于A,B兩點(diǎn),且|PA|•|PB|=1,求非負(fù)實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列說(shuō)法中正確的是(  )
A.奇函數(shù)f(x)的圖象經(jīng)過(guò)(0,0)點(diǎn)B.y=|x+1|+|x-1|(x∈(-4,4])是偶函數(shù)
C.冪函數(shù)y=x${\;}^{\frac{1}{2}}$過(guò)(1,1)點(diǎn)D.y=sin2x(x∈[0,5π])是以π為周期的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x+2)=f(x),當(dāng)x∈(0,1)時(shí),f(x)=x,則f(2011.5)=-0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.以(2,1)為圓心且與直線y+1=0相切的圓的方程為( 。
A.(x-2)2+(y-1)2=4B.(x-2)2+(y-1)2=2C.(x+2)2+(y+1)2=4D.(x+2)2+(y+1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)x3(a>0,a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱f(x)為D上的弱減函數(shù).若f(x)=$\frac{1}{{\sqrt{1+x}}}$
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當(dāng)x∈[1,3]時(shí),不等式$\frac{a}{x}≤\frac{1}{{\sqrt{1+x}}}≤\frac{a+4}{2x}$恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|-1在[0,3]上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=x2+ax+b的圖象與x軸的一個(gè)交點(diǎn)為(1,0),對(duì)稱軸為x=2,則函數(shù)f(x)的解析式為f(x)=x2-4x+3.

查看答案和解析>>

同步練習(xí)冊(cè)答案