6.三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=$\sqrt{3}$,則該三棱錐外接球的表面積為5π.

分析 根據(jù)題意,證出BC⊥平面PAC,PB是三棱錐P-ABC的外接球直徑.利用勾股定理結(jié)合題中數(shù)據(jù)算出PB$\sqrt{5}$得外接球半徑,從而得到所求外接球的表面積.

解答 解:PA⊥平面ABC,AC⊥BC,
∴BC⊥平面PAC,PB是三棱錐P-ABC的外接球直徑;
∵Rt△PBA中,AB=$\sqrt{2}$,PA=$\sqrt{3}$,
∴PB=$\sqrt{5}$,可得外接球半徑R=$\frac{1}{2}$PB=$\frac{\sqrt{5}}{2}$,
∴外接球的表面積S=4πR2=5π.
故答案為5π.

點(diǎn)評(píng) 本題在特殊三棱錐中求外接球的表面積,著重考查了線面垂直的判定與性質(zhì)、勾股定理和球的表面積公式等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

設(shè)集合,,,則中元素的個(gè)數(shù)為( )

A.3 B.4 C.5 D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

為了了解某學(xué)校1200名高中男生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況.根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,據(jù)此估計(jì)該校高中男生體重在的人數(shù)為( )

A.360 B.336 C.300 D.280

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若正實(shí)數(shù)x、y滿足x+y+$\frac{1}{x}$+$\frac{1}{y}$=5,則x+y的最大值與最小值的和為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某幾何體三視圖如圖所示,則該幾何體的體積為$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S10:S5=1:2,則S15:S5=3:4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2018010106020007197894/SYS201801010602145724939854_ST/SYS201801010602145724939854_ST.001.png">的函數(shù)是奇函數(shù).

(1)求的值;

(2)用定義證明上是單調(diào)遞減函數(shù);

(3)若對(duì)任意,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知箱子里裝有4張大小、形狀都相同的卡片,標(biāo)號(hào)分別為1,2,3,4.從箱子中任意取出一張卡片,記下它的標(biāo)號(hào)m,然后再放回箱子中;第二次再?gòu)南渥又腥稳∫粡埧ㄆ浵滤臉?biāo)號(hào)n,則使得冪函數(shù)f(x)=(m-n)2x${\;}^{\frac{m}{n}}$圖象關(guān)于y軸對(duì)稱的概率為$\frac{3}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若某一圓錐的側(cè)面積與其底面積的比值為$\frac{{2\sqrt{3}}}{3}$,則此圓錐軸截面的頂角大小為120°.

查看答案和解析>>

同步練習(xí)冊(cè)答案