已知定義域?yàn)镽的函數(shù)f(x)滿足f(1)=1,f′(x)是f(x)的導(dǎo)函數(shù),若?x∈R,f′(x)<
1
2
,則不等式f(x)<
x
2
+
1
2
的解集為
 
分析:先構(gòu)造函數(shù)F(x)=f(x)-
1
2
x
,根據(jù)條件求出函數(shù)F(x)的單調(diào)性,結(jié)合不等式f(x)<
x
2
+
1
2
,變形得到F(x)<F(1),根據(jù)單調(diào)性解之即可.
解答:解:令F(x)=f(x)-
1
2
x
,則
F'(x)=f'(x)-
1
2
<0
∴函數(shù)F(x)在R上單調(diào)遞減函數(shù)
f(x)<
x
2
+
1
2

∴f(x)-
1
2
x
<f(1)-
1
2
即F(x)<F(1)
根據(jù)函數(shù)F(x)在R上單調(diào)遞減函數(shù)可知x>1
故答案為:(1,+∞)
點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,解決本題的關(guān)鍵是構(gòu)造法的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)已知定義域?yàn)镽的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對(duì)稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時(shí),f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案