已知a,b為正數(shù),則“a+b≤2“是“
a
+
b
≤2“成立的( 。
A、充分非必要條件
B、必要非充分條件
C、充分必要條件
D、既非充分也非必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.
解答: 解:若a+b≤2,
則(
a
+
b
2=a+b+2
a
b
≤a+b+a+b=2(a+b)≤4,
a
+
b
≤2成立,即充分性成立,
設(shè)x=
a
,y=
b
,則a=x2,b=y2,
則不等式a+b≤2等價(jià)為x2+y2≤2,
a
+
b
≤2等價(jià)為x+y≤2,
則由圖象可知必要性成立,
故“a+b≤2“是“
a
+
b
≤2“成立充要條件,
故選:C
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在定義域的公共部分內(nèi),兩奇函數(shù)之積(商)為
 
函數(shù);兩偶函數(shù)之積(商)為
 
函數(shù);一奇一偶函數(shù)之積(商)為
 
函數(shù);(注:取商時(shí)應(yīng)分母不為零)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1,0),
b
=(-1,0,2),且(x
a
+
b
)⊥(
a
-
b
),則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x∈[-1,1],y∈[0,2],則點(diǎn)P(x,y)落在區(qū)域
2x-y+2≥0
x-2y+1≤0
x+y-3≤0
內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a,b,c滿足lg(10a+10b)=a+b,lg(10a+10b+10c)=a+b+c,則c的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:lg5•lg8000+(lg2
3
2+lg0.06-lg6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,不具有奇偶性的是( 。
A、y=x2-1
B、y=sinxcosx
C、y=
1-2x
+
2x-1
D、y=lgx2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直三棱柱ABC-A1B1C1中,AC=CC1=BC=1,∠BCA=90°,D、D1分別是AB與A1B1的中點(diǎn).
(1)求異面直線AC1與A1B1所成的角的大;
(2)求證:平面AC1D1∥平面B1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x+2
2-x
的值域
 

查看答案和解析>>

同步練習(xí)冊(cè)答案