【題目】已知函數(shù)f(x)=lnx+1.
(Ⅰ)證明:當(dāng)x>0時(shí),f(x)≤x;
(Ⅱ)設(shè) ,若g(x)≥0對(duì)x>0恒成立,求實(shí)數(shù)a的取值范圍.

【答案】解:(Ⅰ)證明:構(gòu)造函數(shù)m(x)=f(x)﹣x=lnx+1﹣x, 得x=1;
當(dāng)x∈(0,1)時(shí),m'(x)>0;當(dāng)x∈(1,+∞)時(shí),m'(x)<0;
∴[m(x)]max=m(1)=0;
∴m(x)≤0;
∴f(x)≤x;
(Ⅱ)若g(x)≥0對(duì)x>0恒成立等價(jià)于 對(duì)x>0恒成立;
,問(wèn)題等價(jià)于a≥G(x)max
由(Ⅰ)知lnx+1≤x(當(dāng)且僅當(dāng)x=1時(shí)取得等號(hào));
(當(dāng)且僅當(dāng)x=1時(shí)取得等號(hào));
故G(x)max=1,所以a≥1;
∴實(shí)數(shù)a的取值范圍為[1,+∞)
【解析】(Ⅰ)先構(gòu)造函數(shù)m(x)=lnx+1﹣x,然后求導(dǎo),根據(jù)導(dǎo)數(shù)符號(hào)即可求出函數(shù)m(x)的最大值為0,即得到m(x)≤0,從而證得f(x)≤x;(Ⅱ)根據(jù)x>0, 便可解得 ,而根據(jù)上面知lnx+1≤x恒成立,從而便可求得 的最大值,進(jìn)而即可得出實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定圓,動(dòng)圓過(guò)點(diǎn) 且與圓相切,記圓心的軌跡為

(1)求曲線的方程;

(2)已知直線 交圓兩點(diǎn).是曲線上兩點(diǎn),若四邊形的對(duì)角線,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在(0,+∞)上的連續(xù)函數(shù)y=f(x)滿(mǎn)足:xf′(x)﹣f(x)=xex且f(1)=﹣3,f(2)=0.則函數(shù)y=f(x)(
A.有極小值,無(wú)極大值
B.有極大值,無(wú)極小值
C.既有極小值又有極大值
D.既無(wú)極小值又無(wú)極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書(shū)店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷(xiāo)售前該書(shū)店擬定了5種單價(jià)進(jìn)行試銷(xiāo),每種單價(jià)(元)試銷(xiāo)l天,得到如表單價(jià)(元)與銷(xiāo)量(冊(cè))數(shù)據(jù):

單價(jià)(元)

18

19

20

21

22

銷(xiāo)量(冊(cè))

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:

(2)預(yù)計(jì)今后的銷(xiāo)售中,銷(xiāo)量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書(shū)的成本是12元,書(shū)店為了獲得最大利潤(rùn),該冊(cè)書(shū)的單價(jià)應(yīng)定為多少元?

附:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解當(dāng)下高二男生的身高狀況,某地區(qū)對(duì)高二年級(jí)男生的身高(單位: )進(jìn)行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.

(1)若身高在以?xún)?nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?

(2)從所抽取的樣本中身高在的男生中隨機(jī)再選出2人調(diào)查其平時(shí)體育鍛煉習(xí)慣對(duì)身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)人下半身長(zhǎng)(肚臍至足底)與全身長(zhǎng)的比近似為,稱(chēng)為黃金分割比),堪稱(chēng)“身材完美”,且比值越接近黃金分割比,身材看起來(lái)越好,若某人著裝前測(cè)得頭頂至肚臍長(zhǎng)度為72,肚臍至足底長(zhǎng)度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計(jì)師的你,對(duì)TA的著裝建議是( )

A.身材完美,無(wú)需改善B.可以戴一頂合適高度的帽子

C.可以穿一雙合適高度的增高鞋D.同時(shí)穿戴同樣高度的增高鞋與帽子

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)寫(xiě)出函數(shù)的解析式;

(2)若直線與曲線有三個(gè)不同的交點(diǎn),求的取值范圍;

(3)若直線 與曲線內(nèi)有交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從高三抽出名學(xué)生參加數(shù)學(xué)競(jìng)賽,由成績(jī)得到如下的頻率分布直方圖.試?yán)妙l率分布直方圖求:

1)這名學(xué)生成績(jī)的眾數(shù)與中位數(shù);

2)這名學(xué)生的平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了實(shí)現(xiàn)綠色發(fā)展,避免浪費(fèi)能源,某市政府計(jì)劃對(duì)居民用電采用階梯收費(fèi)的方法.為此,相關(guān)部分在該市隨機(jī)調(diào)查了戶(hù)居民六月份的用電量(單位:)和家庭收入(單位:萬(wàn)元),以了解這個(gè)城市家庭用電量的情況.

用電量數(shù)據(jù)如下:

.

對(duì)應(yīng)的家庭收入數(shù)據(jù)如下:

.

(Ⅰ)根據(jù)國(guó)家發(fā)改委的指示精神,該市計(jì)劃實(shí)施階階梯電價(jià)使的用戶(hù)在第一檔,電價(jià)為/的用戶(hù)在第二檔,電價(jià)為/;的用戶(hù)在第三檔,電價(jià)為/,試求出居民用電費(fèi)用與用電量間的函數(shù)關(guān)系;

(Ⅱ)以家庭收入為橫坐標(biāo)電量為縱坐標(biāo)作出散點(diǎn)圖(如圖),求關(guān)于的回歸直線方程(回歸直線方程的系數(shù)四舍五入保留整數(shù)).

(Ⅲ)小明家的月收入,按上述關(guān)系估計(jì)小明家月支出電費(fèi)多少元?

參考數(shù)據(jù):,,,.

參考公式:一組相關(guān)數(shù)據(jù),,…,的回歸直線方程的斜率和截距的最小二乘法估計(jì)分別為其中,為樣本均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案