在區(qū)間上的最大值是      
2

試題分析:求出函數(shù)的導函數(shù),令導函數(shù)為0,求出根,判斷根是否在定義域內(nèi),判斷根左右兩邊的導函數(shù)符號,求出最值。
f′(x)=3x2-6x=3x(x-2)令f′(x)=0得x=0或x=2(舍)當-1<x<0時,f′(x)>0;當0<x<1時,f′(x)<0所以當x=0時,函數(shù)取得極大值即最大值所以f(x)的最大值為2,故答案為2
點評:解決該試題的關鍵是求函數(shù)的最值,一般先求出函數(shù)的極值,再求出區(qū)間的端點值,選出最值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)。
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求在曲線上一點的切線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)y=的導數(shù)為_______________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點的切線方程;
(3)對一切的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共14分)已知函數(shù)其中常數(shù).
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)當時,若函數(shù)有三個不同的零點,求m的取值范圍;
(3)設定義在D上的函數(shù)在點處的切線方程為時,若在D內(nèi)恒成立,則稱P為函數(shù)的“類對稱點”,請你探究當時,函數(shù)是否存在“類對稱點”,若存在,請最少求出一個“類對稱點”的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)。
(1)若的單調(diào)增區(qū)間是(0,1)求m的值。
(2)當時,函數(shù)的圖象上任意一點的切線斜率恒大于3m,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線y=x與拋物線y=x(x+2)所圍成的封閉圖形的面積等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)求函數(shù)f(x)=- 2的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知函數(shù)).
①當時,求曲線在點處的切線方程;
②設的兩個極值點,的一個零點.證明:存在實數(shù),使得按某種順序排列后構成等差數(shù)列,并求.

查看答案和解析>>

同步練習冊答案