【題目】如圖,在四棱錐B﹣ACDE中,AE⊥平面ABC,CD∥AE,∠ABC=3∠BAC=90°,BF⊥AC于F,AC=4CD=4,AE=3.

(1)求證:BE⊥DF;
(2)求二面角B﹣DE﹣F的平面角的余弦值.

【答案】
(1)方法一(幾何法):

證明:∵AE⊥平面ABC,BF平面ABC,∴AE⊥BF,

∵BF⊥AC,AE∩AC=A,

∴BF⊥平面AEC,DF平面AEC,∴BF⊥DF,

∵∠ABC=3∠BAC=90°,又AC=4CD=4,

∴∠BAC=30°.CD=1.

又BF⊥AC.∴ ,

又CD∥AE,AE⊥平面ABC,∴CD⊥平面ABC.

又AC平面ABC.∴CD⊥AC,∴∠DFC=45°.

又AF=AC﹣CF=3=AE,∴∠EFA=45°,

∴∠EFD=90°,即DF⊥EF.

又BF∩EF=F,BF.EF平面BEF.

∴DF⊥平面BEF,BE平面BEF.

∴DF⊥BE.

方法二(向量法):

證明:(Ⅰ)過(guò)F作Fz∥AE,由AE⊥平面ABC可知Fz⊥平面ABC,

又AC.BF平面ABC,于是Fz⊥AC,F(xiàn)z⊥BF,

又BF⊥AC,∴BF.AC.Fz兩兩垂直.

以F為原點(diǎn),F(xiàn)A.FB.Fz依次為x.y.z軸建立空間直角坐標(biāo)系(如圖).

∵∠ABC=3∠BAC=90°,AC=4CD=4,AE=3,

∴CD=1,∠BAC=30°.

, ,AF=AC﹣FC=3, .…(3分)

于是F(0,0,0), ,D(﹣1,0,1),E(3,0,3), ,

所以DF⊥BE


(2)方法一(幾何法):

解:如圖,過(guò)點(diǎn)F作FG⊥DE于點(diǎn)G,連接BG.

由(1)知BF⊥平面AEC,又DE平面AEC,∴BF⊥DE.

又BF∩FG=F,BF.FG平面BFG,∴DE⊥平面BFG.

又BG平面BFG,∴BG⊥FG.(三垂線定理)

故∠BGF二面角B﹣DE﹣F的平面角.

在Rt△EAF中,

在Rt△FCD中,

在Rt△EFD中,

由EFFD=FGED得

在Rt△BFC中,

在Rt△BFG中,

∴二面角B﹣DE﹣F的平面角的余弦值為

方法二(向量法):

解:(2)由(1)知 , ,

于是 ,所以FB⊥FE,又FB⊥AC.

所以 是平面DEF的一個(gè)法向量.

設(shè) 是平面BDE的一個(gè)法向量,則

取z=2,得到

又二面角B﹣DE﹣F是銳二面角.

∴二面角B﹣DE﹣F的平面角的余弦值為


【解析】方法一(幾何法):(1)推導(dǎo)出AE⊥BF,BF⊥AC,從而BF⊥DF,再求出CD⊥平面ABC,從而CD⊥AC,進(jìn)而DF⊥EF,由此能證明DF⊥平面BEF,從而得到DF⊥BE.(2)過(guò)點(diǎn)F作FG⊥DE于點(diǎn)G,連接BG,則∠BGF二面角B﹣DE﹣F的平面角,由此能求出二面角B﹣DE﹣F的平面角的余弦值.
方法二(向量法):(1)過(guò)F作Fz∥AE,以F為原點(diǎn),F(xiàn)A.FB.Fz依次為x.y.z軸建立空間直角坐標(biāo)系,利用向量法能證明DF⊥BE.(2)求出平面DEF的一個(gè)法向量和平面BDE的一個(gè)法向量,利用向量法能求出二面角B﹣DE﹣F的平面角的余弦值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案