(本小題12分) 定義:若函數(shù)f(x)對于其定義域內(nèi)的某一數(shù)x0,有f(x0)= x0,則稱x0是f(x)的一個不動點(diǎn).已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).

   (1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點(diǎn);

   (2)若對任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩個不動點(diǎn),求a的取值范圍;

   (3)在(2)的條件下,若y=f(x)圖象上兩個點(diǎn)A、B的橫坐標(biāo)是函數(shù)f(x)的不動點(diǎn),且A、B兩點(diǎn)關(guān)于直線y=kx+對稱,求b的最小值.

 

【答案】

(1)-1或3;(2)0<a<1;(3)bmin=-1

【解析】(1)f(x)=x2-x-3,由x2-x-3=x,解得 x=3或-1,

所以所求的不動點(diǎn)為-1或3.                        ………………………3分

       (2)令ax2+(b+1)x+b-1=x,則ax2+bx+b-1=0       ①

       由題意,方程①恒有兩個不等實(shí)根,所以△=b2-4a(b-1)>0,

       即b2-4ab+4a>0恒成立,………………………………5分

       則△¢=16a2-16a<0,故0<a<1 …………………………7分[來源:學(xué)+科+網(wǎng)Z+X+X+K]

       (3)設(shè)A(x1,x1),B(x2,x2)(x1≠x2),則kAB=1,∴k=﹣1,

       所以y=-x+,                 ……………………………………8分

       又AB的中點(diǎn)在該直線上,所以=﹣+,

       ∴x1+x2=,

       而x1、x2應(yīng)是方程①的兩個根,所以x1+x2=﹣,即﹣=,

       ∴b=﹣                   …………………………………………10分

       =-=-

       ∴當(dāng) a=∈(0,1)時,bmin=-1               .………………………………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題12分)設(shè)點(diǎn),點(diǎn)Ay軸上移動,點(diǎn)Bx軸正半軸(包括原點(diǎn))上移動,點(diǎn)MAB連線上,且滿足

(Ⅰ)求動點(diǎn)M的軌跡C的方程;

(Ⅱ)設(shè)軌跡C的焦點(diǎn)為F,準(zhǔn)線為l,自M引的垂線,垂足為N,設(shè)點(diǎn)使四邊形PFMN是菱形,試求實(shí)數(shù)a;

(Ⅲ)如果點(diǎn)A的坐標(biāo)為,,其中,相應(yīng)線段AM的垂直平分線交x軸于.設(shè)數(shù)列的前n項(xiàng)和為,證明:當(dāng)n≥2時,為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題12分)

如圖,曲線是以原點(diǎn)為中心,以、為焦點(diǎn)的橢圓的一部分,曲線 是以為頂點(diǎn),以為焦點(diǎn)的拋物線的一部分,是曲線的交點(diǎn),且為鈍角,若

(I)求曲線所在的橢圓和拋物線的方程;

(II)過作一條與軸不垂直的直線,分別與曲線、依次交于、四點(diǎn)(如圖),若的中點(diǎn),的中點(diǎn),問是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題12分)已知橢圓C的焦點(diǎn)在x軸上,它的一個頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率。(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓C的右焦點(diǎn)作直線交橢圓C于A、B兩點(diǎn),交y軸于M,若為定值嗎?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:瀏陽一中、田中高三年級2009年下期期末聯(lián)考試題 數(shù)學(xué)試題 題型:解答題

(本小題12分)

如圖,曲線是以原點(diǎn)為中心,以、為焦點(diǎn)的橢圓的一部分,曲線 是以為頂點(diǎn),以為焦點(diǎn)的拋物線的一部分,是曲線的交點(diǎn),且為鈍角,若,
(I)求曲線所在的橢圓和拋物線的方程;
(II)過作一條與軸不垂直的直線,分別與曲線依次交于、、、四點(diǎn)(如圖),若的中點(diǎn),的中點(diǎn),問是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省石家莊市畢業(yè)班復(fù)習(xí)質(zhì)量檢測數(shù)學(xué)理卷 題型:解答題

(本小題12分)

已知動點(diǎn)P到定點(diǎn)A(0,1)的距離比它到定直線y = -2的距離小1.

(I)求動點(diǎn)P的軌跡C的方程;

(II)已知點(diǎn)Q為直線y= -1上的動點(diǎn),過點(diǎn)q作曲線C的兩條切線,切點(diǎn)分別為M,N,求的取值范圍.(其中O為坐標(biāo)原點(diǎn))

 

查看答案和解析>>

同步練習(xí)冊答案