在平行四邊形ABCD中,AC與DB交于點O,E是線段OD的中點,AE延長線與CD交于F.若=( )
A.
B.
C.
D.
【答案】分析:根據兩個三角形相似對應邊成比例,得到DF與FC之比,做FG平行BD交AC于點G,使用已知向量表示出要求的向量,
得到結果.
解答:解:∵由題意可得△DEF∽△BEA,
==,再由AB=CD可得 =
=
作FG平行BD交AC于點G,
=,
===
=+=+=+==
=+=+,
故選B.
點評:本題主要考查兩個向量的加減法的法則,以及其幾何意義,向量是數(shù)形結合的典型例子,向量的加減運算是用向量解決問題的基礎,要學好運算,才能用向量解決立體幾何問題,三角函數(shù)問題,好多問題都是以向量為載體的,本題屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若
AC
=
a
,
BD
=
b
,則
AE
=
 
.(用
a
、
b
表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•天津模擬)在平行四邊形ABCD中,
AE
=
1
3
AB
,
AF
=
1
4
AD
,CE與BF相交于G點.若
AB
=
a
,
AD
=
b
,則
AG
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,邊AB所在直線方程為2x-y-3=0,點C(3,0).
(1)求直線CD的方程;
(2)求AB邊上的高CE所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行四邊形ABCD中,點E為CD中點,
AB
=
a
,
AD
=
b
,則
BE
等于
-
1
2
a
+
b
-
1
2
a
+
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•房山區(qū)一模)在平行四邊形ABCD中,若
AB
=(1,3)
,
AC
=(2,5)
,則向量
AD
的坐標為
(1,2)
(1,2)

查看答案和解析>>

同步練習冊答案