【題目】△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.己知c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.
【答案】
(1)解:∵△ABC中,c= asinC﹣ccosA,
由正弦定理可得:sinC= sinAsinC﹣sinCcosA,
∵sinC≠0,∴1= sinA﹣cosA=2 ,
即 = ,∵ ∈ ,
∴ = ,
∴A= .
(2)解:∵a=2,△ABC的面積為 ,
∴ ,化為bc=4.
由余弦定理可得: ,
化為b+c=4.
聯(lián)立 ,解得b=c=2.
∴b=c=2.
【解析】(1)由c= asinC﹣ccosA,由正弦定理可得:sinC= sinAsinC﹣sinCcosA,化為 = ,即可得出.(2)由a=2,△ABC的面積為 ,可得bc=4.由余弦定理可得: ,化為b+c=4.聯(lián)立解出即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:,以及對(duì)余弦定理的定義的理解,了解余弦定理:;;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入x (萬元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y (萬元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
據(jù)上表得回歸直線方程 = x+ ,其中 =0.76, = ﹣ ,據(jù)此估計(jì),該社區(qū)一戶收入為15萬元家庭年支出為( )
A.11.4萬元
B.11.8萬元
C.12.0萬元
D.12.2萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)f(x)在[﹣1,0]上為單調(diào)增函數(shù),則( )
A.f(sin )<f(cos )
B.f(sin1)>f(cos1)
C.f(sin )<f(sin )
D.f(sin )>f(tan )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (x∈R)時(shí),則下列所有正確命題的序號(hào)是 .
①若任意x∈R,則等式f(﹣x)+f(x)=0恒成立;
②存在m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根;
③任意x1 , x2∈R,若x1≠x2 , 則一定有f(x1)≠f(x2)
④存在k∈(1,+∞),使得函數(shù)g(x)=f(x)﹣kx在R上有三個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項(xiàng)等比數(shù)列{bn}滿足:b1=2,b3=8.
(Ⅰ) 求數(shù)列{an},{bn}的通項(xiàng)公式an , bn;
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線.
(1)寫出曲線, 的普通方程;
(2)過曲線的右焦點(diǎn)作傾斜角為的直線,該直線與曲線相交于不同的兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,在正方體表面上與點(diǎn)A距離是 的點(diǎn)形成一條曲線,這條曲線的長(zhǎng)度是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (x∈R)
(1)用定義證明f(x)是增函數(shù);
(2)若g(x)=f(x)﹣a是奇函數(shù),求g(x)在(﹣∞,a]上的取值集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com