(2012•黃浦區(qū)二模)若實數(shù)x、y滿足約束條件
x≥0
y≥0
2x+y-24≤0
-3x+y+6≥0
則目標(biāo)函數(shù)z=2x-3y的最小值是( 。
分析:先作出不等式組表示的可行域,結(jié)合目標(biāo)函數(shù)中z的幾何意義可求z取得最小值的位置,即可求解
解答:解:由約束條件得如圖所示的四邊形形區(qū)域,
由2x-3y=z,可得y=
2
3
x-
1
3
z,則-
1
3
z表示直線y=
2
3
x-
1
3
z在y軸上的截距,截距越大,z越小
做直線L:2x-3y=0
顯然當(dāng)平行直線過點C(0,24)時,z取得最小值為-72
故選C
點評:本題主要考查了線性規(guī)劃在求解目標(biāo)函數(shù)的最值中的應(yīng)用,解題的關(guān)鍵是分析目標(biāo)函數(shù)中z的幾何意義,以判斷取得最值的位置
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,則cos2α=
63
65
63
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當(dāng)m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關(guān)于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)如圖,已知圓柱的軸截面ABB1A1是正方形,C是圓柱下底面弧AB的中點,C1是圓柱上底面弧A1B1的中點,那么異面直線AC1與BC所成角的正切值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知函數(shù)f(x)=|x2-2ax+a|(x∈R),給出下列四個命題:
①當(dāng)且僅當(dāng)a=0時,f(x)是偶函數(shù);
②函數(shù)f(x)一定存在零點;
③函數(shù)在區(qū)間(-∞,a]上單調(diào)遞減;
④當(dāng)0<a<1時,函數(shù)f(x)的最小值為a-a2
那么所有真命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)函數(shù)f(x)=log
1
2
(2x+1)
的定義域為
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步練習(xí)冊答案