如圖,點(diǎn)A在雙曲線y=
2
x
上,點(diǎn)B在雙曲線y=
5
x
上,且AB∥y軸,C,D在y軸上,若四邊形ABCD為平行四邊形,則它的面積為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A,B的橫坐標(biāo)為x,則|AB|=
5
x
-
2
x
=
3
x
,即可求出平行四邊形的面積.
解答: 解:設(shè)A,B的橫坐標(biāo)為x,則|AB|=
5
x
-
2
x
=
3
x
,
∵四邊形ABCD為平行四邊形,則
∴它的面積為
3
x
•x
=3.
故答案為:3.
點(diǎn)評:本題考查平行四邊形的面積,考查反比例函數(shù)的性質(zhì),比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若2≤2x+y≤4,則函數(shù)f(x,y)=x2-y2+xy-2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角三角形ABC中,
cosA
cosC
=
3
a
2b-
3
c

(1)求A的大;
(2)求cosB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長為2的正方體被一平面截得的幾何體的三視圖如圖所示,那么被截去的幾何體的體積是( 。
A、
14
3
B、
10
3
C、4
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,f(x)=cosx(asinx-cosx)+sin2x的定義域是[
π
4
,
11
24
π],f(
π
4
)=
3
.給出下列幾個(gè)命題:
①f(x)在x=
π
4
處取得小值;
[
5
12
π,
11
24
π]
是f(x)的一個(gè)單調(diào)遞減區(qū)間;
③f(x)圖象向左平移
π
12
個(gè)單位,將得到函數(shù)y=2sin2x的圖象;
④使得f(x)取得最大值的點(diǎn)僅有一個(gè)x=
π
3

其中正確命題的序號(hào)是
 
.(將你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,且an=2Sn-3,則{an}的通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上小正方形邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A、8B、12C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)上的點(diǎn)M到直線l:y=x+1的最小距離為
2
4
.點(diǎn)N在直線l上,過點(diǎn)N作直線與拋物線相切,切點(diǎn)分別為A、B.
(Ⅰ)求拋物線方程;
(Ⅱ)當(dāng)原點(diǎn)O到直線AB的距離最大時(shí),求三角形OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,方程
|x+y|
a2
+
|x-y|
b2
=1(a>b>0)表示的曲線是(  )
A、橢圓B、雙曲線C、矩形D、菱形

查看答案和解析>>

同步練習(xí)冊答案