已知直角的三邊長(zhǎng),滿足
(1)在之間插入2011個(gè)數(shù),使這2013個(gè)數(shù)構(gòu)成以為首項(xiàng)的等差數(shù)列,且它們的和為,求的最小值;
(2)已知均為正整數(shù),且成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(3)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項(xiàng)為邊長(zhǎng)均可以構(gòu)成直角三角形,且是正整數(shù).
(1)最小值為; (2) 2、3、4.
(3)證明:由成等比數(shù)列,.
由于為直角三角形的三邊長(zhǎng),證明數(shù)列中的任意連續(xù)三項(xiàng)為邊長(zhǎng)均可以構(gòu)成直角三角形. 證得,
故對(duì)于任意的都有是正整數(shù).

試題分析:(1)是等差數(shù)列,∴,即. 2分
所以,的最小值為; 4分
(2) 設(shè)的公差為,則 5分
設(shè)三角形的三邊長(zhǎng)為,面積,
. 7分
,
當(dāng)時(shí),
經(jīng)檢驗(yàn)當(dāng)時(shí),,當(dāng)時(shí), 9分
綜上所述,滿足不等式的所有的值為2、3、4. 10分
(3)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010915546450.png" style="vertical-align:middle;" />成等比數(shù)列,.
由于為直角三角形的三邊長(zhǎng),知,, 11分
,得
于是
.… 12分
,則有.
故數(shù)列中的任意連續(xù)三項(xiàng)為邊長(zhǎng)均可以構(gòu)成直角三角形. 14分
因?yàn)?,

, 15分
,同理可得,
故對(duì)于任意的都有是正整數(shù). 16分
點(diǎn)評(píng):難題,本題綜合性較強(qiáng),涉及等差數(shù)列、等比數(shù)列、不等式及構(gòu)成直角三角形的條件。對(duì)法則是自點(diǎn)變形能力要求高,易出錯(cuò)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

項(xiàng)正項(xiàng)數(shù)列為,其前項(xiàng)積為,定義為“相對(duì)疊乘積”,如果有2013項(xiàng)的正項(xiàng)數(shù)列的“相對(duì)疊乘積”為,則有2014項(xiàng)的數(shù)列的“相對(duì)疊乘積”為_(kāi)______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的前n項(xiàng)和記為,已知,
證明:(1)數(shù)列是等比數(shù)列;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列是等差數(shù)列,且,則這個(gè)數(shù)列的前5項(xiàng)和=
A. 10B. 15C. 20D. 25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列滿足,N*),則連乘積的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,滿足,且依次是等比數(shù)列的前兩項(xiàng)。
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在常數(shù),使得數(shù)列是常數(shù)列?若存在,求出的值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△中,角、成等差數(shù)列,且
(1)求角、;
(2)設(shè)數(shù)列滿足,前項(xiàng)為和,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),且滿足,
(1)推測(cè)的通項(xiàng)公式;
(2)若,令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列滿足,則數(shù)列的前2013項(xiàng)的和             

查看答案和解析>>

同步練習(xí)冊(cè)答案