8.{an}是等比數(shù)列且an>0,且a2•a4+2a3•a5+a4•a6=25,則a3+a5═( 。
A.5B.±5C.10D.±10

分析 利用等比數(shù)列的性質(zhì)把已知等式變形,可得$({a}_{3}+{a}_{5})^{2}=25$,開方后得答案.

解答 解:由a2•a4+2a3•a5+a4•a6=25,
得${{a}_{3}}^{2}+2{a}_{3}{a}_{5}+{{a}_{5}}^{2}=25$,
即$({a}_{3}+{a}_{5})^{2}=25$,
∵an>0,∴a3+a5=5.
故選:A.

點評 本題考查等比數(shù)列的通項公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,正三棱錐A-BCD中,已知AB=BC=$\sqrt{6}$.
(1)求證:AD⊥BC;
(2)求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知點A(3,2),F(xiàn)是拋物線y2=2x的焦點.點M在拋物線上移動時,|MA|+|MF|取得最小值時M點的坐標為( 。
A.(0,0)B.($\frac{1}{2}$,1)C.(1,$\sqrt{2}$)D.(2,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某手機專賣店針對iphone7手機推出分期付款方式,該店對最近購買iphone7手機的100人進行統(tǒng)計(注:每人僅購買一部手機),統(tǒng)計結(jié)果顯示如表所示:
付款方式分1期分2期分3期分4期分5期
頻數(shù)3525a10b
已知分3期付款的頻率為$\frac{3}{20}$,請以此100人為作為樣本,以此來估計消費人群總體,并解決以下問題:
( I)從消費人群總體中隨機抽取3人,求“這3人中(每人僅購買一部手機)恰好有1人分4期付款”的概率
( II)若銷售一部iphone7手機,顧客分1期付款(即全款),其利潤為1000元;分2期付款或3期付款,其利潤為1500元;分4期付款或5期付款,其利潤為2000元,用X表示銷售一部iphone7手機的利潤,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)定義在R上的偶函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(2-t),且x∈[0,1]時,f(x)=-ln(x2+e),則f(2017)的值等于( 。
A.-ln(e+1)B.-ln(4+e)C.-1D.-ln(e+$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知12<a<60,15<b<36,求a-b及$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若函數(shù)f(x)滿足:在定義域D內(nèi)存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“1的飽和函數(shù)”.給出下列四個函數(shù):①f(x)=2x;②f(x)=$\frac{1}{x}$;③f(x)=lg(x2+2);④f(x)=cosπx.
其中是“1的飽和函數(shù)”的所有函數(shù)的序號為①④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,設(shè)三棱柱ABC-A1B1C1的體積為1,過四邊形ACC1A1的中心O作直線分別交棱AA1于點P,交棱CC1于點Q,則四棱錐B-APQC的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若關(guān)于x的方程lgx=5-2x的解x0∈(k,k+1),k∈Z,則k=2.

查看答案和解析>>

同步練習冊答案