已知四棱錐S-ABCD中,△SAD是邊長為a的正三角形,平面SAD⊥平面ABCD,四邊形ABCD為菱形,∠DAB=60°,P為AD中點(diǎn),Q為SB中點(diǎn).

(Ⅰ)求證:BC⊥平面SPB;

(Ⅱ)求二面角Q-PC-B的正切值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的四個頂點(diǎn)在以O(shè)為球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,則當(dāng)球的表面積為400π時,點(diǎn)O到平面ABC的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知四棱錐S-ABCD中,四邊形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
12
,E是棱SC的中點(diǎn).
(Ⅰ)求證:DE∥平面SAB;
(Ⅱ)求三棱錐S-BED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高一數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:022

已知三棱錐S-ABC的三條側(cè)棱兩兩垂直,SA=5,SB=4,SC=3,D為AB中點(diǎn),E為AC中點(diǎn),則四棱錐S-BCED的體積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (08年安徽信息交流)已知三棱錐S―ABC的四個頂點(diǎn)在以O(shè)為球心的同一球面上,且SA=SB=SC=AB,∠ACB=90。,則當(dāng)球的表面積為400時。點(diǎn)O到平面ABC的距離為       (      )

    A.4                B.5                C.6                D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)理科考試試題 題型:解答題

(本小題滿分13分)

如圖,已知四棱錐的底面是直角梯形,∠ABC∠BCD90°,ABBCPBPC2CD2,側(cè)面PBC⊥底面ABCD。

   (1)求證:;K^S*5U.C#O%

   (2)求二面角的余弦值。

 

查看答案和解析>>

同步練習(xí)冊答案