分析 (1)求出函數(shù)的導數(shù),通過討論k的范圍,求出函數(shù)的單調區(qū)間即可;
(2)求出函數(shù)的導數(shù),問題轉化為f(x)min<k-6+g(x)min,通過討論k的范圍,結合函數(shù)的單調性,確定k的具體范圍即可.
解答 解:(1)g′(x)=2kx-$\frac{2k}{{x}^{2}}$=$\frac{2k{(x}^{3}-1)}{{x}^{2}}$,…(1分)
當k>0時,令g′(x)>0,得x>1,∴g(x)的遞增區(qū)間為(1,+∞).…(2分)
令g′(x)<0,得x<1,x≠0,∴g(x)的遞減區(qū)間為(-∞,0),(0,1).…(3分)
k<0時,同理得g(x)的遞增區(qū)間為(-∞,0),(0,1);遞減區(qū)間為(1,+∞).…(5分)
(2)f′(x)=2sinx-1+ln(x+1)+1=2sinx+ln(x+1),…(6分)
∵當x∈(-1,1]時,y=2sinx及y=ln(x+1)均為增函數(shù),
∴f′(x)在(-1,1]為增函數(shù),又f′(0)=0,…(7分)
∴當x∈(-1,0)時,f′(x)<0;當x∈(0,1]時,f′(x)>0,
從而,f(x)在(-1,0)上遞減,在(0,1]上遞增,…(8分)
∴f(x)在(-1,1]上的最小值為f(0)=-2.…(9分)
∵f(x1)-g(x2)<k-6,∴f(x1)<k-6+g(x2),
∴f(x)min<k-6+g(x)min,當k>0時,∴g(x)min=g(1)=3k,
∴4k-6>-2,∴k>1,
當k<0時,g(x)min=g(2)=5k,∴6k-6>-2,∴k>$\frac{2}{3}$,
又k<0,∴k<0時不合題意.
綜上,k∈(1,+∞).…(12分)
點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,是一道綜合題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[0,\frac{{\sqrt{3}}}{3}]$ | B. | $[0,\sqrt{3}]$ | C. | $[\sqrt{3}-1,\sqrt{3}]$ | D. | $[\frac{{\sqrt{3}-1}}{2},\sqrt{3}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x≤1} | B. | {x|x≥2或x≤0} | C. | {x|1<x≤2} | D. | {x|1≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com