已知雙曲線的右焦點為F,過F且斜率為的直線交C于A、B兩點,若=4,則C的離心率為( )

A.
B.
C.
D.
【答案】分析:設(shè)雙曲線的有準線為l,過A、B分別作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直線AB的斜率可知直線AB的傾斜角,進而推,由雙曲線的第二定義|AM|-|BN|=|AD|,進而根據(jù),求得離心率.
解答:解:設(shè)雙曲線的右準線為l,
過A、B分別作AM⊥l于M,BN⊥l于N,BD⊥AM于D,
由直線AB的斜率為
知直線AB的傾斜角為60°
∴∠BAD=60°
,
由雙曲線的第二定義有:

=
,∴
故選A.
點評:本題主要考查了雙曲線的定義.解題的關(guān)鍵是利用了雙曲線的第二定義,找到了已知條件與離心率之間的聯(lián)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則此雙曲線的標準方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結(jié)論:
①當a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標準方程是x2=
4
3
y
;
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標準方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的準線方程為y=-
1
4a

④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的右焦點為F(3,0),且以直線x=1為右準線.求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題,其中所有正確命題的序號為
①②
①②

①當a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P(-2,3);
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標準方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的焦點坐標為(
1
4a
,0
);
④曲線C:
x2
4-k
+
y2
k-1
=1
不可能表示橢圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的右焦點為F,過F作雙曲線一條漸近線的垂線,垂足為A,過A作x軸的垂線,B為垂足,且
OF
=3
OB
(O為原點),則此雙曲線的離心率為( 。

查看答案和解析>>

同步練習冊答案