【題目】已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)(文)若是橢圓上的動點,過P作垂直于x軸的垂線,垂足為M,延長MP至N,使得P恰好為MN中點,求點N的軌跡方程;
(理)若已知點,是橢圓上的動點,求線段中點的軌跡方程;
【答案】(1)y2=1(2)(文)x2+y2=4.(理)(x)2+4(y)2=1.
【解析】
(1)由左焦點為F(),右頂點為D(2,0),得到橢圓的半長軸a,半焦距c,再求得半短軸b,最后由橢圓的焦點在x軸上求得方程.
(2)(文)設(shè)N(x,y),則M(x,0),利用中點坐標(biāo)公式可得P(x,),代入橢圓的標(biāo)準(zhǔn)方程即可得出.
(理)設(shè)線段PA的中點為M(x,y),點P的坐標(biāo)是(x0,y0),由中點坐標(biāo)公式可知,將P代入橢圓方程,即可求得線段PA中點M的軌跡方程
(1)由題意可知:橢圓的焦點在x軸上,設(shè)1(a>b>0),
由橢圓的左焦點為F(,0),右頂點為D(2,0),即a=2,c,
則b2=a2﹣c2=1,
∴橢圓的標(biāo)準(zhǔn)方程為:y2=1
(2)(文)設(shè)N(x,y),則M(x,0),利用中點坐標(biāo)公式可得P(x,),
代入橢圓C1的標(biāo)準(zhǔn)方程為x2+y2=4.
所以N的軌跡方程為x2+y2=4.
(理)設(shè)線段PA的中點為M(x,y),點P的坐標(biāo)是(x0,y0),
由中點坐標(biāo)公式可知,整理得:,
由點P在橢圓上,
∴(2y)2=1,
∴線段PA中點M的軌跡方程是:(x)2+4(y)2=1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某影院共有1000個座位,票價不分等次,根據(jù)該影院的經(jīng)營經(jīng)驗,當(dāng)每張票價不超過10元時,票可全部售出,當(dāng)每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院一個合適的票價,符合的基本條件是:
①為了方便找零和算賬,票價定為1元的整數(shù)倍;
②影院放映一場電影的成本費為5750元,票房收入必須高于成本支出.
(1)設(shè)定價為()元,凈收入為元,求關(guān)于的表達(dá)式;
(2)每張票價定為多少元時,放映一場的凈收入最多?此時放映一場的凈收入為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機用戶中隨機抽取2000名進(jìn)行調(diào)查,將受訪用戶按年齡分成5組: 并整理得到如下頻率分布直方圖:
(1)求的值;
(2)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機用戶中隨機抽取一人,估計其年齡低于40歲的概率;
(3)估計春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機用戶的平均年齡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在邊長為4的正方形ABCD中,E,F(xiàn)分別是邊AB,BC上的點(端點除外),將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′(如圖②).
(1)求證:A′D⊥EF;
(2)當(dāng)點E,F分別為AB,BC的中點時,求直線A′E與直線BD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】采用系統(tǒng)抽樣方法從人中抽取人做問卷調(diào)查,為此將他們隨機編號為,,,,分組后某組抽到的號碼為41.抽到的人中,編號落入?yún)^(qū)間 的人數(shù)為( )
A. 10 B. C. 12 D. 13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為左,右焦點,分別為左,右頂點,D為上頂點,原點到直線的距離為.設(shè)點在第一象限,縱坐標(biāo)為t,且軸,連接交橢圓于點.
(1)求橢圓的方程;
(2)(文)若三角形的面積等于四邊形的面積,求直線的方程;
(理)求過點的圓方程(結(jié)果用t表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知與是集合的兩個子集,滿足:與的元素個數(shù)相同,且為空集,若時總有,則集合的元素個數(shù)最多為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是各項均為正數(shù)且公比不等于1的等比數(shù)列,對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號為( )
A.①②B.①②④C.③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com