在數(shù)列中,,設(shè)
(1)證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項和;
(3)若,為數(shù)列的前項和,求不超過的最大的整數(shù).

(1)見解析;(2);(3)不超過的最大的整數(shù)是

解析試題分析:(1)注意從出發(fā),得到    2分
,肯定數(shù)列是公比為的等比數(shù)列.
(2)利用“錯位相減法”求和.
(3)由(1)得,從而可得到
 ,利用“裂項相消法”求.
利用 
得出結(jié)論.
試題解析:(1)由兩邊加得,    2分
所以 , 即 ,數(shù)列是公比為的等比數(shù)列  3分
其首項為,所以                      4分
(2)                                         5分
                     ①
                 ②
①-②得
所以                                          8分
(3)由(1)得,所以
              10分
 
所以不超過的最大的整數(shù)是.                        12分
考點:等比數(shù)列的定義、通項公式及求和公式,“錯位相減法”,“裂項相消法”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,數(shù)列{Sn}的前n項和為Tn,滿足Tn=2Sn-n2,n∈N.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對任意的,都有.
(1)若{bn }的首項為4,公比為2,求數(shù)列{an+bn}的前n項和Sn;
(2)若 ,試探究:數(shù)列{bn}中是否存在某一項,它可以表示為該數(shù)列中其它項的和?若存在,請求出該項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列{an}的前n項和記為Sn,a1=t,點(Sn,an+1)在直線y=3x+1上,n∈N*.
(1)當(dāng)實數(shù)t為何值時,數(shù)列{an}是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)bn=log4an+1,cn=an+bn,Tn是數(shù)列{cn}的前n項和,求Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,3Sn=an-1(n∈N?).
(1)求a1,a2;
(2)求證:數(shù)列{an}是等比數(shù)列;
(3)求an和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個數(shù),且a1,a2,a3中的任何兩個數(shù)不在下表的同一列.

 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
 
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:bn=an+(-1)nlnan,求數(shù)列{bn}的前2n項和S2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列{an}的前n項和記為Sna1t,點(Snan+1)在直線y=2x+1上,n∈N*.
(1)當(dāng)實數(shù)t為何值時,數(shù)列{an}是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)bn=log3an+1,Tn是數(shù)列的前n項和, 求T2 013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和是,且.求數(shù)列的通項公式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),求該數(shù)列的通項公式.

查看答案和解析>>

同步練習(xí)冊答案